
上QQ阅读APP看书,第一时间看更新
二 理论模型
本文基于前人研究,运用随机前沿分析方法及其理论公式,建立面板数据下的我国能源效率随机前沿模型,同时对模型参数进行估计。在此,可以选择任意函数包络样本点来确定生产前沿。假设有N个决策单元(DMU)的截面数据,则生产前沿可以被表示为:
lnyit=f(x′it,β)-uit i=1,2,…,N t=1,2,…,T (1)
其中,xit是投入向量,yit是产出向量,β是未知参数向量,f(x′it,β)表示生产函数,uit表示技术无效项的非负随机变量。然而公式(1)中暗含一个问题,即yit以非随机exp[f(x′it,β)]为上限,没有考虑测量误差和系统噪声对产出的影响。为此,后续学者提出随机前沿模型:
lnyit=f(x′it,β)+(vit-uit) i=1,2,…,N t=1,2,…,T (2)
由于产出值以随机变量exp[f(x′it,β)+vit]为上限,随机误差vit可正可负,因此随机前沿围绕确定部分exp[f(x′it,β)]扰动。公式(2)可以被写为:

公式(3)中,exp[f(x′it,β)]是确定部分,是系统噪声,
是技术无效项。因此以产出为导向的技术效率是可观测的产出与随机前沿产出之比:

假定vit与uit独立分布,vit~v.v.dN(0,σ2v),uit=δ(t)ui,ui~i.i.dN+(μ,σ2i),δ(t)=exp[η(T-t)];σ2v、σ2u、η、γ为待估计参数。