![线性代数简明教程](https://wfqqreader-1252317822.image.myqcloud.com/cover/562/24273562/b_24273562.jpg)
§1.3 行列式性质与计算
导学提纲
1.行列式有哪些性质?
2.怎么用行列式性质,将行列式化成上(下)三角形?
按n阶行列式定义(定义1.1.4)或展开公式(定理1.2.1)计算n≥5阶行列式是很复杂的.本节介绍行列式的性质,用这些性质可以将行列式化简成上(下)三角形后求值.
将行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0036_0001.jpg?sign=1738867451-DE4Kyksb1X45BUOhY4UcCwSPm7FD96U4-0-bb94ff4069acb0e99098d99c6c3d234a)
的行与列对换(即以主对角线为轴翻转;亦即把第i行改成第i列,i=1,2, …, n),得行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0036_0002.jpg?sign=1738867451-i4NUwPPXFgqY5UHmtBdTUZlx9ltsESH4-0-9c3f837c520efbc1fead00f9ef965554)
称后者为|A|的转置行列式,记作|AT|.例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0036_0003.jpg?sign=1738867451-zlRB3e6rg1aKU0XcmYzyR45WD2JMrTEE-0-85817e1b7342f33ff60d28ca2e8b08d9)
读者可以动手算一下,这两个行列式的值都等于-24.其实|A|=|AT|是一个普遍事实.
性质1 n阶行列式|A|=|AT|.
性质1表明行列式的行有什么性质,列也有什么性质.
性质2 用数k乘以行列式|A|=|aij|nn某一行(列)的每一个元素后,所得行列式值等于k|A|.即
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0037_0001.jpg?sign=1738867451-YR1xPpiVA2RnRqf5XkMcGgMIAuQSsXOs-0-edba032bc85c17a562f122c988ef3659)
或
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0037_0002.jpg?sign=1738867451-pXnjA6FglJxpZ9feaygFqjAC8wTc8PQc-0-6dfd413a1c3a423d530d405df49b891e)
或者说,如果行列式某一行(列)所有元素有公因子k,可以将k提到行列式前面.
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0037_0003.jpg?sign=1738867451-2ybg3jRfBhDuStfUtWNKhGvdrjVEoaDC-0-6e8cac589dcc01a0e3aa674e1b8a4fcd)
用3乘以|A|的第2行每一个元素,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0037_0004.jpg?sign=1738867451-PW4A0LLZWW2WamrJh6hd8jDLGMtBSK92-0-7c89471946df5890dded81dc6bf5f7ce)
又例如,行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0038_0001.jpg?sign=1738867451-ajBnoO11cgE9IJqAVk8QSCUXUPRa7fd1-0-27ef0c8e3f33c0187acc8e995ca3383d)
的第3列有公因子4,可将4提到行列式前面,从而简化计算.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0038_0002.jpg?sign=1738867451-bMbZYeYwCskN5NegifY1OlNAlvFjnKGc-0-9cba9f677ed79d18122e208fec04435e)
再例如,欲计算行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0038_0003.jpg?sign=1738867451-6IQgy23KFbmychAjBjxQWEZXSMzCfFCq-0-cf8872f8d61415c98ff3b303298015c2)
为避免分数运算,又要保持|A|值不变,可以将|A|的第1行乘以2,前面乘以;第3行乘以3,前面乘以
,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0038_0006.jpg?sign=1738867451-5TBmcJF0d6TwQGFXjWNgvUfveglExzck-0-901c6db25ef66932d13dbb6f8fc0b793)
注意
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0038_0007.jpg?sign=1738867451-5yABF4CeOdvvZjXucN4Vj6QD4CQ3K96r-0-efeb527ac41a542b3ef58bdb4f8ae631)
推论1.3.1 如果行列式中有一行(列)元素全为“0”,则行列式值等于零.
性质3 行列式可以按某一行(列)“拆”成两个行列式之和.即
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0039_0001.jpg?sign=1738867451-WRCTP7YzxyROjB1BGfGHqixADVw8C6Qs-0-f3790b82035cd15390ffdde9a07bf64a)
或
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0039_0002.jpg?sign=1738867451-zDl84G01uh2lm1Z4EWMuIiN9ncoEy6RW-0-ebb2a163934ebf2d5242818209f7e0ea)
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0039_0003.jpg?sign=1738867451-F5uDcO0qp02XQyNM26UZGMKw73PQVwqJ-0-004d4823177adb81bde83cde668018fe)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0040_0001.jpg?sign=1738867451-kBErRJilOdHBumaQ9oIO7mMx1xOZiV6q-0-7de8be026634d9e80c42c5bce6f2a168)
注意 下面的拆法是错误的.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0040_0002.jpg?sign=1738867451-xJxXLWxpbgNls0Vpsnvu3kxcwsSuwdzh-0-d7a39ca823301a34a50d297fbd2b7670)
例1.3.1
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0040_0003.jpg?sign=1738867451-wuY8PG5PgfLkkJTPdnD1kSFm2z2u8KQY-0-efd642265a7b4a07eedf98ce4b51c2b9)
性质4 对换行列式的两行(列),行列式值反号,即
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0040_0004.jpg?sign=1738867451-7XBh4tar7UvxtHe2wXFUIcq8bmR68WkA-0-59947d3fe005cfc798c97eb9a3026e16)
或
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0041_0001.jpg?sign=1738867451-dfB8isD3EjfLg86YqBTE3n1Wa5SGtPUL-0-6fae117d38cadcaf0b99d5f319f1f916)
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0041_0002.jpg?sign=1738867451-fe5raIZl6AFK93pM0ndgBDAGZHQaLhq4-0-b8449191dfce627174b8371c71e83c6e)
对换|A|的第1行与第3行,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0041_0003.jpg?sign=1738867451-S0QGz0ksP8F9X6gLtbniaHOu7xKuX9CW-0-fe3935ffa03987a64bf52374ae953198)
对换|A|的第2列与第3列,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0041_0004.jpg?sign=1738867451-qAIe3xuqCU5GgXvbFIpROCMvVsNhlj3o-0-63835ce67e78a2d30e999186610434bb)
推论1.3.2 行列式中若有两行(列)元素对应相同,则行列式值等于零.
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0041_0005.jpg?sign=1738867451-NDTmmjxNr8xSo5X26a4Z7PKT2cO6hlNG-0-916670c094a4d0496c54254bbdb38c38)
证 设|A|=|aij|nn的第i行与第j行相同,对换|A|的第i行与第j行,得-|A|.由|A|=-|A|,推出2|A|=0,所以|A|=0.
推论1.3.3 若行列式中有两行(列)元素对应成比例,则行列式值等于零.
证 不失一般性,以3阶行列式为例.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0042_0001.jpg?sign=1738867451-nUCl6gjryCQZsBWET2Vt8xFa60AYfw6f-0-83769600a1a9ddedda6715aaa6bac87b)
性质5 将行列式某一行(列)的k倍加到另一行(列)上去,行列式值不变.
证 不失一般性,以3阶行列式|A|=|aij|为例,将|A|的第1行的k倍加到第3行上去(第1行不变,第3行变了),得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0042_0002.jpg?sign=1738867451-JxfX85Hz7WfXZ9woMvSWVBQXFi1eksDm-0-7dfd0a1612e569ef03259e81b50e070d)
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0042_0003.jpg?sign=1738867451-g0wlxuQZVQqxvUY9kTDvPzVRuEBgB3IH-0-512512cf2ac058cbf5ef7a6a10cee5ab)
例1.3.2 计算行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0043_0001.jpg?sign=1738867451-WLQhtBs2RhiQB55LVaENtpCYp03OhXLW-0-38320f8a67bbbdff0f076c38a1962fa4)
分析 目标是用行列式性质将行列式化成上三角形,然后求值.
解 注1
注1:当c≠0时,表示提出第i行(列)公因子c;
表示对换第i行(列)与第j行(列);
表示把第i行(列)的k倍加到第j行(列)上去;以上记号写在等号上(下)面,表示对行(列)运算.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0043_0002.jpg?sign=1738867451-TmOFsDYYPn7FTXPoNCbfZ6KjflW3fbY3-0-e8c5ca19ff3c50ff68c245f91c6eea0d)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0044_0001.jpg?sign=1738867451-JuMqD9q4usrP4oiOZeOoVD49gbjyBX7j-0-d6cc802e2f79ded6fd7782cce400ad54)
例1.3.3 计算行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0044_0002.jpg?sign=1738867451-bOsYv6znzu6Le4wEIq5imN4I3RKTHHUr-0-1b6e9b935b66a5317d0ce3d3a6b31d25)
分析 行列式中元素有分数,为便于计算,第2列乘以3,前面除以3;第4列乘以2,前面除以2.
解法1
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0044_0003.jpg?sign=1738867451-KqNAlmfr8A7Zy8pcU84p2XEoGv1lP1vr-0-7a83f7d93d64a456655eb5b13b4f5a9e)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0045_0001.jpg?sign=1738867451-xScxIwRujyl2CWjtF1yN0jRIDIATimqO-0-88e8984c52a322282c6c8b8ef0d7ad6f)
解法2 继解法1第4步结果:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0045_0002.jpg?sign=1738867451-132pe57LMNSejU4UoiozCPFz6kwsgSzD-0-c2aaf89933894652bf578c05dfb3b77c)
解法3 按第3列展开.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0045_0003.jpg?sign=1738867451-k7uh9I7hT6oksTFu99bU9y9gMKKhWeiu-0-ca3b52188c4e280a6fb3752aeb272c2c)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0046_0001.jpg?sign=1738867451-i6WphMMu4AMh7OIJIbpi8ar1oUGch9dR-0-bcf745896bf2774d9f771c6da183146b)
解法4
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0046_0002.jpg?sign=1738867451-5VoMFrRpWDdY2IiDi0agVvtH8dGJI9GG-0-d59864ae7f9f26038663b309882c17b4)
例1.3.4 计算行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0046_0003.jpg?sign=1738867451-bcJTawCqp0TxxQbFngv2x5KmeW2pdiaN-0-5656951bae564133b070bc63835aa4c7)
分析 欲直接将行列式化成上(下)三角形,需讨论a≠0, a=0.此方法不可取.另观察原式每一行元素之和相同,因此可将第2、3、4列都加到第1列,提出新的第1列公因子a+3,从而得到一个特殊的第1列.
解
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0047_0001.jpg?sign=1738867451-GxNQMScWrL6yoa3MQYQ2C4t4Nj7jh0xg-0-a50418c7615bc43faa4ad29bad006a9f)
请读者计算n阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0047_0002.jpg?sign=1738867451-ErrRXQIjSJUTVQdboqVpBnkG1x4yuYFz-0-ad01cc78104dd484c6a229489ec90c77)
例1.3.5 计算行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0047_0003.jpg?sign=1738867451-MQRgq6aKhAvu3vldT9vl741pwUHxsyCN-0-084bcdf93734f9f702308b46cb5c4b1d)
分析 原式是5阶行列式,主对角元a1, a2, a3, a4分别与右邻元素反号,所以将原式化成下三角形为宜.
解
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0047_0004.jpg?sign=1738867451-xrmFgdRalgui7uVc385NynfDS3PBYg62-0-bf7380e62720bf05c5ed3f80783c066b)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0048_0001.jpg?sign=1738867451-OTqiZOsAf0XMS9CsWeOw7ZEeAsFeXUiT-0-a1ecc1cbe5947d495466a95240359566)
请读者计算n+1阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0048_0002.jpg?sign=1738867451-JbmHEK4x3GAG74FdKw5hQKpUB6UCnf3P-0-fa0f77a9a593d2de68c24e70f36b268c)
例1.3.6 证明
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0048_0003.jpg?sign=1738867451-xIOQ7cE9ZvGs0hWf55sL3JTBuj5zDT8C-0-2f4961ed3e9a2274106308f6e2c9b41a)
证 记等式左边为|A|,将|A|的每一行提出公因子(-1),得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0049_0001.jpg?sign=1738867451-sMKzPMVERB0dBWRwsUGz6UgHiAlEpNUl-0-96349efa28b4666e4adf9697bc9165f3)
移项,2|A|=0,所以|A|=0.
n阶行列式|A|=|aij|nn中,如果aij=-aji,则称|A|为反对称行列式.请读者证明:奇数阶反对称行列式值等于零.
例1.3.7 计算4阶范德蒙(Vandermonde)行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0049_0002.jpg?sign=1738867451-qqoaOlH1OzlSvhOJ9WZlx7hXVblGk95q-0-4281701f35379d1bad60edecb1fa941c)
解
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0049_0003.jpg?sign=1738867451-kMqeHdhOQnOqdFgu7FYqGY7GeGIdcOZ9-0-50be29dc42a1216b317b130b765a9bc6)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0050_0001.jpg?sign=1738867451-cLKT1sqfj8xonRDrCL6oQCPBKVMaofwX-0-7359317996e02ba2a96466e33db6d95a)
用数学归纳法可以证明n阶范德蒙行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0050_0002.jpg?sign=1738867451-4aQ5HdeJOD5VoROWvsmDN0EhDoHy5RiK-0-8f0dc31cc74416710af55352333267ef)
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0050_0003.jpg?sign=1738867451-9c9SB0ER5sMETzbbw5tnIuAcDwGrWPZ2-0-c18db0235fefcce842cba41c8c9d42f1)
习题1.3
1.利用行列式性质证明下列等式:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0051_0001.jpg?sign=1738867451-0NBr2KCYNZo4tFoNXtfGvcpIEUvRUGBD-0-739a8b76de97c7a6c56c5aabe1495def)
2.设3阶行列式|ai j|=a,求下列行列式值.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0051_0002.jpg?sign=1738867451-ODSkoDqeEcsZWsPF0ArvQPhExBOm4Jij-0-c5d1f1b7f31c89e7aa881bfa2b6c4bbc)
3.设5阶行列式|ai j|=12,依下列次序运算:对换第1列与第4列;然后转置;用2乘以所有元素;将第5行的(-3)倍加到第2行上去;再用乘以第3列每一个元素,求最后一个行列式的值.
4.填空:设
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0051_0004.jpg?sign=1738867451-5qZPNkCfXj2GWOddeDCib0LJybywvuZs-0-6fa5897bd2a71979962daed779f38e22)
那么
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0051_0005.jpg?sign=1738867451-yY4rDOS6pYnD0l8X0ABULitOg5hkAhb8-0-96cb666504db4a0a5ccab601f9d59419)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0052_0001.jpg?sign=1738867451-uwKDorb8eA2EmJgEDHs9WzuPJ6oPulrk-0-4db3837aa37eda0d2acc28356726d7c4)
5.填空:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0052_0002.jpg?sign=1738867451-ABsg1fH7rmL7FND1j9hXenrRJ846bkmW-0-5571beb9beaf8eecc59a9783cc142ef1)
6.计算下列行列式:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0052_0003.jpg?sign=1738867451-fYRhHW8NbneI2ORhOG1FEzTYgDA1IB6y-0-337335c7c17991eef0408dd6d1b3e547)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0053_0001.jpg?sign=1738867451-rRt98SConmDv54Fn4xy4bpMnTrCcbcOd-0-8e300520e418813425aa8b4c4a1a9ccb)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0054_0001.jpg?sign=1738867451-NqGn3wt8IVLZn9YiSvd5jCAXATtyfxd6-0-b80056d498a592ee8be353be3d342959)
7.计算行列式:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0055_0001.jpg?sign=1738867451-4lghV3VrSV5SCVQo3XvqczwiyXcNsj2s-0-97d105fc8d50bd88e1b06fde3a85dc67)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0056_0001.jpg?sign=1738867451-pVsvkhJvaGDcotsHTl8xMedqJjBXWJxg-0-e59801125c80e795927608dd94129ac2)
8.解方程:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0056_0002.jpg?sign=1738867451-kFoSLWQpn4cNjxXjcrwrRYQ0QX18fFh0-0-0317058a56b8f9d42ce95dcd3de12517)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0057_0001.jpg?sign=1738867451-JZIjueu3EGlgqPCBgLqzpbsrG5Yd0g4X-0-2b07be8d09aecd277ee06b71df90f137)