![线性代数简明教程](https://wfqqreader-1252317822.image.myqcloud.com/cover/562/24273562/b_24273562.jpg)
§1.1 n阶行列式定义
导学提纲
1.何谓2阶行列式?怎么计算2阶行列式的值?
2.二元一次方程组解的公式?
3.何谓3阶行列式?怎么计算3阶行列式的值?
4.三元一次方程组解的公式?
5.何谓元素aij的余子式M ij?何谓aij的代数余子式A ij?
6.何谓n阶行列式?
为便于记忆二元一次方程组解的公式,引入
定义1.1.1 记号
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0001.jpg?sign=1738867244-NkQ58swEPYCBg73JG9W5P1k7ECPnma74-0-ec06cabb4338670701aaea38d270377b)
称为2阶行列式,它表示代数和a11a22-a12a21,即
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0002.jpg?sign=1738867244-nl2nEHbf2HqiFWlXbGnMxBQqVqO8zDbT-0-5f2c33c2a6334154fb0fadd04c6caf92)
2阶行列式中,横排称为行,竖排称为列.位于第i行第j列的元素ai j称为(i, j)元(i, j=1,2).a11, a22称为主对角线上的元素;a12, a21称为次对角线上的元素.2阶行列式的算法是:主对角线上的两个元素的乘积减去次对角线上两个元素的乘积.例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0003.jpg?sign=1738867244-pj2u80geaqXIScr4HzNKwrR8gSeNcCve-0-8510b433fd2c13df4cae6dbc263ae2c1)
定理1.1.1 二元一次方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0004.jpg?sign=1738867244-GkWpdXtvPyK0rZHCLSCDpZL5webBYHWE-0-d621e236b36a3f4c0db618712dc8fa60)
当系数行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0005.jpg?sign=1738867244-dvBPfT3SKam2DP4Kvg3eQHo3RGvlWSro-0-4c8aa4a05c7f2146f3a118f5ec06eeb8)
时,有唯一解:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0006.jpg?sign=1738867244-NTTL39ALJQzXrKyhfFuf14cRKceYKRPT-0-b013833a1af75ddb7c366ed35ea3628a)
证 ①×a22-②×a12得
(a11a22-a12a21)x1=b1a22-b2a12,
如果a11a22-a12a21≠0,那么
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0001.jpg?sign=1738867244-SfHvbuw8ROxmMN4XKtrVp4eXVCoPwQbN-0-e20323b42e3c427a741a583d6b855b17)
②×a11-①×a21得
(a11a22-a12a21)x2=a11b2-a21b1,
如果a11a22-a12a21≠0,那么
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0002.jpg?sign=1738867244-AYBKaCzcMzpvASekdiJLkeHoQDzrGcsD-0-75055a87833937ec2ddd398dbb779a34)
例1.1.1 解方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0003.jpg?sign=1738867244-OFlrnPk8iroQk7ZD6Nn36TdOjo8whYyd-0-31e89d982073d5a06a817dc4ffa9904e)
解 因为系数行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0004.jpg?sign=1738867244-4tows67odJublvwaErDwqodHCkvQXDSx-0-3ff1dd5d0541f85c84d3db43f879e8bd)
所以有唯一解:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0005.jpg?sign=1738867244-h0V7jpqt6SIpa7hIdrX7tU4C9Xam0PeI-0-66de7d68c06e5332148b60b53a049a47)
(读者可将解代入方程组验算之).
用加减消元法解三元一次方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0020_0001.jpg?sign=1738867244-1PGbb3useumz8wMdqmrDSmlssrYxfd7g-0-8a1a8de97680cbf840020990af579a78)
得
定理1.1.2 三元一次方程组(1),当系数行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0020_0002.jpg?sign=1738867244-c6ayFzSjVYDxSSb7TMaDHr4SNnlGZfQc-0-c04d9ddd9377944a2d7ef2d809e16e48)
时,有唯一解:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0020_0003.jpg?sign=1738867244-iN39FzEibYSasGXln2qMOmVJqrkgDUDq-0-e288b05818cbe3968cb2b3b3b9c3f1a3)
为此引入
定义1.1.2 记号
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0020_0004.jpg?sign=1738867244-BB0BB8fdKX4FlSZ5tEZ0S3RtGvUaNDlI-0-43fbaf77819314edbcd49fd7be5b1f97)
称为3阶行列式.它表示代数和
a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31.
即
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0021_0001.jpg?sign=1738867244-K4A5CO6frwe3NpEliVYJU5Q5GyO5DRD5-0-b5580fbda43252a58dc6b2754c3c229b)
3阶行列式等于3! =6项代数和.每一项都是取自不同行不同列的3个元素相乘,主对角线方向三项前面带正号,次对角线方向三项前面带负号.3阶行列式算法如下图:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0021_0002.jpg?sign=1738867244-a8MhLnQOPeTAk5XK6MdLWd5ffhq70ljU-0-03b4b5d1e30f6b304cd15ab6b6a21368)
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0021_0003.jpg?sign=1738867244-li85gWkjcizQTq4lEsr2Xde0FP330jQo-0-24e72eb34b6377ea1bb60b41406e20a7)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0022_0001.jpg?sign=1738867244-8KX65b9jLkQiafawvR2QIOYgF0YMLE4p-0-2f87452dff7769ad185cc97cb616f942)
例1.1.2 解方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0022_0002.jpg?sign=1738867244-Xb4tVKNBjJ6tQYfcd321hcw5ylUD1klD-0-659d679e023e60a3ccd9bd8bb00374b7)
解 因为系数行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0022_0003.jpg?sign=1738867244-dPl5sePtDKDMlJyY16pelXEgv3BE0M5s-0-6211ce8f1c9369f22a122e980dbababd)
所以有唯一解:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0022_0004.jpg?sign=1738867244-W0Eg5RLQvSUP4llpX0Sy6oqroGGuepmb-0-5c77522749be07789259859ed291abe1)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0023_0001.jpg?sign=1738867244-3xxRJpIA1xFS9GyLGbHUD3QtPLHyf6B7-0-e401dfed38d305ab041d3b24676ae4e5)
(读者可以将解代入方程组验算之).
例1.1.3 解方程
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0023_0002.jpg?sign=1738867244-FOOLRoygBd7w9vY5GBTEvVk4swKrsdRV-0-5ec9cf85f1a5bce26d0ee7d9e9b1a0e6)
解 (1)左边=(λ-3)(λ+1)-5=λ2-2λ-8=(λ+2)(λ-4)=0,
所以方程有两个根:λ1=-2, λ2=4.
(2)左边=(λ+1)(λ-3)(λ-2)-(-1)×4×(λ-2)=(λ-2)(λ2-2λ+1)=(λ-2)(λ-1)2=0,
所以方程有根:λ1=2, λ2=1(2重).
定理1.1.1和定理1.1.2可以推广到n个方程n个未知量的一次方程组情形(见 §1.4).为此需要引入n阶行列式定义,先分析3阶行列式与2阶行列式的关系.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0023_0003.jpg?sign=1738867244-GjUtjcScYQs8epCI17e54pejn4CP3CEE-0-2cdc883d3a0cdff64984a8da01cb2b78)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0024_0001.jpg?sign=1738867244-ozkyZrkI4s40n4XAyp1dywTfYUvriMee-0-459d8fb479d8dcf0911a4b60fb872fbd)
定义1.1.3 行列式中元素aij的余子式Mij是指去掉aij所在第i行和第j列元素后余下的行列式.aij的代数余子式Aij=(-1)i+jMij.
例如,3阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0024_0002.jpg?sign=1738867244-V4cveyP5qIfIgYIGJnUz2eh8mfYQkG8E-0-65e0afe2c53519d1bdfc1ccc6d474a1a)
中,元素
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0024_0003.jpg?sign=1738867244-65WaUkDzEi3JW2GwzyPQsTXr8QZHRSsK-0-833242e21b45047821a7efa7f7c4def2)
所以3阶行列式还可以定义为
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0024_0004.jpg?sign=1738867244-W6Y2jvMTMxg9jTZR7uLA5kaEc2sZtIJb-0-5a19cfa36dd08c10d2f45c35bc262263)
即3阶行列式的值等于第1行每个元素与其代数余子式乘积之和.
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0025_0001.jpg?sign=1738867244-e8vx8tbstPa8vea66vWBSYzpvkFqMzLx-0-0918f573baccd0ff9842e4860e1491d8)
现在我们归纳出n阶行列式定义.
定义1.1.4 n=2阶行列式已经定义(定义1.1.1),假设n-1阶行列式已经定义,那么n阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0026_0001.jpg?sign=1738867244-sYAB9A0cVA58EZDkEBfOxMCRRTl8GRNn-0-e21f5ba087e7cd6fd09963b680296e74)
其中A1j=(-1)1+jM1j,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0026_0002.jpg?sign=1738867244-6lkFrjrvkpKDLPgZZHKXR3uwPtlkTxGH-0-02a3b0b3d3b77e469d8848cfb49f801b)
或简单记作|aij|nn.
例1.1.4 按定义计算下列行列式.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0026_0003.jpg?sign=1738867244-nrIJW7IZilrQcUGAfEFhUD4U6pZIT1SM-0-ea1c72cb3069737e64e1279f32c3731e)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0027_0001.jpg?sign=1738867244-oXPZWeYn2A3lANwCr7CJdEEVk3Bsydbl-0-46ecdc00ec1fd8924fc4467fdbf2c471)
解
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0027_0002.jpg?sign=1738867244-k1o8XXcJPBwWBubp1GlACYOAF3WEtCBz-0-e5a25401fb33317169136c1d96929bfa)
一般地,n阶下三角行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0027_0003.jpg?sign=1738867244-cl6qulXI5wvS5P9EKA3WiaCL0jvujDMI-0-e2e38410b9fe1d8dfeef599986d0ca77)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0028_0001.jpg?sign=1738867244-Ql9zeiZTlJNPt5Wa0PwUTeoFbmh5aQot-0-b5c46353fada92781ef50ed7bd064529)
第(3)题答案说明4阶行列式中次对角线上4个元素的乘积前面带正号.
可见,对于n≥4阶行列式,2、3阶行列式的对角线算法已不适用!
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0028_0002.jpg?sign=1738867244-CrKBRyzLrPaauDS209KJiQJlTKhMrX29-0-8bf86854a0d774994760d60572aca7fb)
第(4)题可以作为公式用.例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0028_0003.jpg?sign=1738867244-ulBtich7oeJLyLFV8GqcPiWkHr8MzztU-0-acb87229e4a30ef47250d1938ca40583)
一般地,设|A|=|aij|r, |B|=|bij|s,那么有公式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0028_0004.jpg?sign=1738867244-exNF2mJrP3PliIcewNl29WsbyppYFoku-0-a2c6eb2c9421df4ebc70ca990c304b1d)
习题1.1
1.填空题:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0029_0001.jpg?sign=1738867244-c2RUHWCfEklMkFaIsDJlDVowblua3oKw-0-99bc8b50409b8a48517f1e3a054f5066)
2.解方程:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0029_0002.jpg?sign=1738867244-wrzH4AHZuTngaXEHtivOSZyCAjw2Tngp-0-ed139784d20ba12568a49f001ad6fec4)
3.解方程组:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0029_0003.jpg?sign=1738867244-TiO8Fivmdxk1QRKgFYxFxsoNIwos2mzh-0-3c8573d660c95a3237b9c1b54e09a070)
4.按定义计算行列式:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0030_0001.jpg?sign=1738867244-mNx1RknAskVyKL4VEo7xVL1M4X6G3DjD-0-6b4154f44af0023a2a3f61f230e697f6)
5.按定义计算行列式:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0030_0002.jpg?sign=1738867244-ZRN7y0sVDfxQSzYcn2ejzzCgAJmLilBi-0-d764c98cb56805d1a6d5f62333622fba)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0031_0001.jpg?sign=1738867244-a49TmBXVg5oBQWHfvpODuIkxHr2sYquN-0-ddf0e216a00e16d39cd1598120246ff6)