![欧阳光中《数学分析》(上册)配套题库【名校考研真题+章节题库+模拟试题】](https://wfqqreader-1252317822.image.myqcloud.com/cover/599/27032599/b_27032599.jpg)
第6章 导数和微分
1.设f(x)在[-1,1]上有二阶连续偏导数,f(0)=0,令
,
证明:
(1)g(x)在x=0处连续且可导,并计算g'(0);
(2)g'(0)在x=0处也连续。[南京大学、复旦大学、南京理工大学、中北大学研、上海理工大学、华东师范大学2006研]
证明:(1)由于
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image455.jpg?sign=1738992362-KyzdM5eTdDuvz6A940dtP7dpHlzR1M1F-0-7521c20ef11b1f324b9477547bd563be)
并由L’Hospital法则知
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image456.jpg?sign=1738992362-bXiDYO7KbNVx7EY75xMO4YS8iGyP7312-0-746b14529c1f7a48c1311d41b4866bc1)
所以,g(x)在x=0处连续且可导,
(2)由于
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image458.jpg?sign=1738992362-qixj70Zdso8Jaf8jdyJOWJZt42OAFIBC-0-9fa785a60ece1f015c2b16156c25903f)
所以由L’Hospital法则知
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image459.jpg?sign=1738992362-Bilmj2cdLDK6M6F6T4DsOwtZR82Azz7d-0-14b6ea9dce18e46cc0dc22517d6c5561)
故g'(x)在x=0处也连续。
2.问函数,在x=0处最高能有多少阶导数?这个导数值是多少,并给出证明。[中北大学研]
解:当x≠0时,有
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image461.jpg?sign=1738992362-08f3cRMkSeMYRm6mQ6a7hGkIGwFRRIly-0-a8b2b91f0358ab725c2f12daafc6106a)
所以
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image462.jpg?sign=1738992362-3BSICOhwBcRlAOENMe67dLLUsyzXHwrp-0-c84e38a1c4a5c8d767c0198887701950)
但不存在,故在x=0处,最高能有二阶导数,且
3.设f(x)是定义在R上的函数,且对任意的,都有
。若f'(0)=1,证明:对任意的x∈R,都有
。[江苏大学2006研]
证明:在中令
,有
。又由
知,f(x)不恒为零,故有f(0)=1。由导数的定义和
可得
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image473.jpg?sign=1738992362-reNf5ofNz1R2TBqFwZxwW9kGvL4GnIFf-0-7a9ccb7daf2ac088d7543385b5a4727f)
4.设,求
.[华南理工大学、南京师范大学研]
解:对方程两边关于x求导可得,所以
对上述的一阶导数表达式
两边再关于x求导得,代入
的表达式,得
。
5.设y=y(x)由等式确定,求
.[中国地质大学2006研]
解:,因为方程组中第二个方程是y关于t的一个隐函数,则对第二个方程关于t求导可得
,所以
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image485.jpg?sign=1738992362-bAJ6qalyEcNtLBe4DhjMYAfOzSVWWSYr-0-9780e733fd0f7484a0dcb9e7470c73e1)
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image486.jpg?sign=1738992362-xrxDdjrqk6grEd6bq9mk2UqaOwxGo3EW-0-995d534249d326c41617cbca1aa0d071)
下求.
当t=0时,易知y(0)=-1,,于是
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image489.jpg?sign=1738992362-RVmykgRvwGKH8cK2HEtQ0Ppu0s3SdpWo-0-bd33cbed2f4c5d3ab3271e5113a9ce8b)
故有.
6.设求
[华东师范大学研]
解:
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image493.jpg?sign=1738992362-6JdyLgz36oEDpDbPoWWYahObcKFj1EJi-0-1e8348aa1c8c00f0b4db3029494af0dd)
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image494.jpg?sign=1738992362-BPnMtIwMmsD8sU4rxeTAxbOaquBTqoIm-0-129b307eb8e971e580ef14bdac593e33)
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image495.jpg?sign=1738992362-OnZLvu77oq2aEJ1AjBdM5ITWooDtzJMT-0-6729e1dc56e4ba5db0936d2aa1882f12)
k为奇数时,k为偶数时,
.
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image498.jpg?sign=1738992362-IjPIAKd04iaBCA1X3VBHUhqcltMCTWED-0-8c17de18b59bd32219c7ac36b0a56715)
7.求出函数的导函数f'(x),讨论f'(x)的连续性(若有间断点,须指出其类别).[内蒙古大学研]
解:当x≠0时
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image500.jpg?sign=1738992362-RJ7M6CM05c3lepkRxqDaDdunfgN4E1oL-0-db348386410ce6be2d9615b6fdf0ed59)
不存在.
不存在,因此x=0是f'(x)的惟一间断点,它是第二类间断点.
8.椭圆上任意两点联结成的线段,称为此椭圆的弦.证明:椭图的任意两条平行弦之中点联线必经过原点(即椭圆中心).[上海化工学院研]
证明:设两条平行弦分别为AB与CD,这4点的坐标分别为
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image504.jpg?sign=1738992362-YYRCq683kboW6gZruvO3ndSCVgCkcDy9-0-7d734116a93ce581167ed25645d74e00)
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image505.jpg?sign=1738992362-ivhLTjgM66NssZxtHrB27KzClnHTuhSu-0-5387d0ca81144293ced45a8a34eb3d2d)
(1)若AB与CD都平行于x轴(或y轴),则结论显然成立.
(2)若AB、CD的斜率都是k∈(0,+∞),则
两弦AB与CD两弦中点分别为.再设EO和FO的斜率分别为
,则
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image510.jpg?sign=1738992362-lRKvz4VEtbRgLVYGa9S4P49nCDZkUMno-0-27cab3de1ad6b5bb5036bd3c2fbed32e)
①
由于在椭圆上,所以
②
③
将②,③代入①得
④
类似可得
⑤
由④,⑤得,从而E、O、F在一条直线上,即两弦中点联线过原点.