![伍胜健《数学分析》(第1册)配套题库【名校考研真题+章节题库+模拟试题】](https://wfqqreader-1252317822.image.myqcloud.com/cover/619/27032619/b_27032619.jpg)
第2章 序列的极限
1.求下列极限:
(1).[北京大学研]
(2)f(x)在[-1,1]上连续,恒不为0,求.[华中师范大学研]
解法1:
①
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image062.jpg?sign=1738976634-U2T65yJvkQVNYryzI7TRumTpgmxQg2ot-0-0be08dbb0584d11e1ce22c285a4525e3)
由①式及两边夹法则,.
(2)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image064.jpg?sign=1738976634-xkGNRM2fkdrnAOBkuhdaHclMuFgVfKob-0-95c513858fc41a97771056cc45e5b9ec)
故
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image065.jpg?sign=1738976634-hvMv4LnUwZUuk4BKgHpGXk4fC8QlgYHk-0-f3d0a1849213e9f0450349bded224f51)
解法2:
f在[-1,1]上连续;因而f(x)有界
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image066.jpg?sign=1738976634-Uusvj4k5pbUvnYuITdWlRnTJzGAIT2eG-0-e9d7db28451d41c02fc40618879607ea)
2.设数列单调递增趋于
①
证明:(1)
(2)设 ②
证明:,并利用(1),求极限
.[中国人民大学研]
证明:(1)(i)先设,由①式,
,存在N>0,当n>N时有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image076.jpg?sign=1738976634-Qn486hpR5zqYmB0FdNJXvAtPPgtbxO9U-0-c10d05c63fcf548d44b62b05bbd947c3)
特别取n=N+1,N+2,……
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image077.jpg?sign=1738976634-wjFvqxPuvRRBc3JpwFzJBALaJlL0YdsF-0-5fa1ca71841f72ebdc439ceedd946152)
将这些式子统统相加得
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image078.jpg?sign=1738976634-Rn5HVmEdwzrpuMqYtv08iM6bEbe8PIFR-0-bda2df007eee6db5ee4c4b4da60da51f)
此即
③
而
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image080.jpg?sign=1738976634-IKrEYjSoMexSRISd0TEV17Q7dAZoYLh1-0-06455cc71daf3a397e9352013d27630d)
由于以及③式,
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image083.jpg?sign=1738976634-6YKgIbhesmWgQW1fTJLGY2IFrAn7RCnF-0-dbbe2e930d6716a9827004a7e4f51800)
(ii)再当时.由①有
④
⑤
下证递增趋于
,由④知,
.当n>N1时,有
⑥
,即
单调递增.由⑥式有
,从而有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image094.jpg?sign=1738976634-r1u3Xajim4TsAxKqDQoCsHgobOMtjtdY-0-6df5aaee3c99c87d0d1d8c6b31cf3f02)
将这些式子统统加起来有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image095.jpg?sign=1738976634-WMAZovXTkiLbJQ3Ae1bQ2GrjgjDbTT3y-0-f17127cfc2366b424dd887dbcb81103b)
⑦
显然当时,
,由⑤式及上面(i)的结论有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image099.jpg?sign=1738976634-5JeC5HEUFPadSg2BR4pGQBVjeVtYfM9u-0-e5f20c308c8e1640640c89e339c9bfae)
(iii)当时,只要令
,则由上面(ii)可证
(2)单调递减.因为
,所以
.即
有下界,从而
(存在).由
两边取极限有
此即
再求,考虑
⑧
⑨
⑩
由⑨⑩两式
⑪
将⑪代入⑧得
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image117.jpg?sign=1738976634-hnDHKhriRUXF0UZfPpUPZpVBLchgTSRv-0-024d2a38b93eedc12a32cf7083834744)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image118.jpg?sign=1738976634-TnvJ2GHdG9Way7q4PHtMzM32uCnEbgQJ-0-ed0cc0913a01304121c739f41a8ab9db)
3.求极限.[中国科学院研]
解:解法1
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image121.jpg?sign=1738976634-DEcfhHhBomAbcHZVjOj9RxvNTNOMXMI8-0-7b54f7442fb7fbc8a4db374252339b7e)
解法2 设
单调增,又
,则
有上界,故
收敛.
令
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image129.jpg?sign=1738976634-WjWTmr1d5ioJlpdFP17tiJfdXW39L10P-0-ccb88637777f7972d2499137e2799a4b)
得
4.已知,求证:
.[哈尔滨工业大学、武汉大学研]
证明:(1)当a=0时,那么,存在N>0,当n>N时
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image135.jpg?sign=1738976634-7tgbN8RMyzKzzTg21FpmxDsrHS1YBVLd-0-22033350360fe8cf943f8a970fb8ae20)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image136.jpg?sign=1738976634-s8gWmjAd33kILdG6mQ3nGW0M0cFoA5eB-0-45242349298e27bfcf0b5b304cd10351)
(2)当a≠0时.因为
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image137.jpg?sign=1738976634-DlNOjDbqi79v6CD9nwLip0kHBr5tyHS5-0-c4cda5569140c4ac5fa06f3a27cc83c2)
令,则对
,存在N>0,当n>N时,有
而
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image141.jpg?sign=1738976634-FjqB3Z5TfZwAA1rfcagJNbI5qkl7aPhS-0-425e98442ceb5dbc89e814d65c97d690)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image143.jpg?sign=1738976634-TxV0MaLGVQLDhFgFOXvdagYExCi4yX9W-0-eee004faa0d8592bff71304901d3a36d)
5.设,且
,n=1,2,…,证明
收敛并求其极限。[西安电子科技大学研]
证明:显然有。由
可得
于是
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image150.jpg?sign=1738976634-uGHuKmjbKuC7H4npQwQs8SIetvr3iKxx-0-2d78a5ca5a66dc91a8d2a90ace377e7a)
故收敛,其极限为
6.设,证明:
[上海交通大学研]
证明:因为,所有对任意的ε,存在N,则对任意的n>N,有
则
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image156.jpg?sign=1738976634-etYOIG7B0hkJZmZ3N9wLRv8HU08INqy9-0-50036050e278cc2701ab233d87bce676)
再由可知左右两侧的极限存在且相等,都等于
7.设求
.[南京大学研、山东师范大学2006研]
解:由于,根据递推关系和数学归纳法可知
于是有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image163.jpg?sign=1738976634-x6utc3sXned9oGP6j7ET9RWw7rztI2py-0-c38c6cc11bd762eeb08d86b23a113c6f)
因此为单调递增有界数列,故存在极限,记为x。在递推关系式中令
,
解得x=2,从而
8.设证明
收敛,并用
表示其极限。[北京理工大学研]
证明:所以对任意的自然数n、P,有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image171.jpg?sign=1738976634-cYeIPNFSB3yRU88Y8bbIbH3DfwHcBcV3-0-930f5497e412cb3e3899684b6a8d4e9f)
当n→∞时,,因为
由Cauchy收敛准则可知
收敛,因为
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image175.jpg?sign=1738976634-JkKZhtjIufBlPKweVvnHde1kiRf4p9Ug-0-ebd8701f56502d092454b1c1d01e1467)
两边取极限,利用等比数列的求和公式,则
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image176.jpg?sign=1738976634-GR1qQGlmEyHJQRRAb72qWhGelZMkB57t-0-f0ed0dff25dbcbcda24763d904f2472e)
9.数列
①
求.[湖南大学研]
解:
②
由②式有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image181.jpg?sign=1738976634-J2B9y9Tcgoghl0NBayhd2b9zi26zTVcb-0-4c496deeb648c4195be3d7eb1651146f)
把上面各式相加得
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image182.jpg?sign=1738976634-PNfqhYhs3uFecxafyLt1Yw2tYKOl87Cg-0-567ecbcacaa095e8facaf9294a4ac011)
两边取极限
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image183.jpg?sign=1738976634-dZntI2rovEv2uVL2fhGlRhxT900SrlmF-0-198e2afed7728cb6921bf80e08aaf3ba)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image184.jpg?sign=1738976634-1x8DYNdswmRCl7w2SJjhz5l5BGELxNiC-0-2dc7e186385f6cc443e8ba9a523ac2e2)
10.设是一个无界数列.但非无穷大量,证明:存在两个子列,一个是无穷大量,另一个是收敛子列.[哈尔滨工业大学研]
证明:取充分大的数M>0,则数列中绝对值不超过M的个数一定有无穷多个,(否则
是无穷大量了),记A为
中绝对值不超过M的元素所成集合,则A是含
无限项的有界集
(1)因为满足的有无穷多项,任取一
又使
的有无穷多项.
取,且
,如此下去,得一
的子列
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image197.jpg?sign=1738976634-ICFKFilGm6Ao8nQWpM5psHnnItCFgwGv-0-510b3324498822e4f5839097a8fe24ba)
于是有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image199.jpg?sign=1738976634-cK3Epj4svD0HCjYn0T1xS3tDUZlK58fo-0-0f7f51c5d201c339f9375b793e971c68)
(2)若A中有无穷多项是相同的数a.则取其为的子列
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image202.jpg?sign=1738976634-ZnARFQNwwFsHvp3lYwQwlOfzhced4JHw-0-114fdccf5a072b99634da815721aafe1)
是收敛子列.
若A无相等的无穷多项,将[-M,M]等分为二则其中必有一区间含A中的无穷多项,令其为[a,b],取xn1∈[a,b],再将[a,b]等分为二,则其中必有一区间含A中无穷多项,令其为,又再将[a1,b1]等分为二,令含A中无穷多项的为[a2,b2]取
且n3>n2,如此下去,得一子列
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image205.jpg?sign=1738976634-5sSOxmEOmDbyxqtvi15WNQk1de9Emqyh-0-789e9e20c1d8f2a9de351fc93d77ab3c)
且.由闭区间套原理
于是
的收敛子列,或者A为有界集,应用有界数列必有收敛子列定理,知
必有收敛的子列.