![胡寿松《自动控制原理》(第6版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/456/27050456/b_27050456.jpg)
3.2 课后习题详解
3-1 设某高阶系统可用下列一阶微分方程近似描述:
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image598.png?sign=1738890201-EFBb1w1uGpXU95417GbGn67vP3gmxwsF-0-dfb051dce8845a4c4c8dbcfce7ca078d)
试证明系统的动态性能指标为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image599.png?sign=1738890201-4r3xPcrs8lY0Vza0CsA51ZLeSsUuNBNw-0-dd62ee41e60a9cab52c863155d296e3a)
证明:由微分方程可知系统传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image600.png?sign=1738890201-EACaUtXKtrk4cEeamapByhIK0VnXKGLa-0-86c8368b3a045e134c9e0e215fcaf295)
当时,有
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image602.png?sign=1738890201-PkbwNBHEPnsT1pU7pKiQAhxHTFkwxR81-0-f13dac41aa35227d1db78b22f9579599)
则
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image603.png?sign=1738890201-lTKTr8W8YEjhPOrUERzaG7zw7XPBf0fp-0-ffdee9188831e5af50e5553db8743c2c)
当(延迟时间)时,须有
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image605.png?sign=1738890201-HiIXCF2BeRLJCKL010HGmEaZdnd7inGZ-0-211be6d70e7e8813461cdf518726bfe5)
解得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image606.png?sign=1738890201-ZxNnTrODIQ4nli9bSzj1m1MF8RZM0VYc-0-40a1d08af3231c6b4ec5b6ecab582947)
令(上升时间),其中
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image608.png?sign=1738890201-66TywDJqsKsLrWvyVeyJSIC8xzpIinsp-0-d497781153e20685f726506b104d1cb9)
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image609.png?sign=1738890201-6EJEdHMLkJdW2IpCBjC3KEyHKgZNJaGA-0-52ad1dc024edaeafb1714047e70db7d5)
解得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image610.png?sign=1738890201-MOGKbPLB1KrpDAAyvemgFcLIHvZeR8xb-0-dee107549f63db3425a020e9d6a50263)
则
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image611.png?sign=1738890201-wQ0Uc8Nwi07pu7yj4kqD8awpGymanm8p-0-a9a906260efa52a7dd32cbbb9459904d)
当(调节时间)
时,须有
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image614.png?sign=1738890201-AyGj9SlQ7RqPtJCzZqIRlYIcEW9Ixh4M-0-a735a15ff156901a1710fcfb6fc8b0ee)
解得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image615.png?sign=1738890201-AhsPIZsvUCNOGvOcDZ0IZ90FN99sCGuy-0-94d8e80984c0f195d907d8de3794382a)
当取Δ=0.02时,可得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image616.png?sign=1738890201-C8wBzCJFt3Iuvwg5nMjPdPr2MdW50mn4-0-ecb798e09c57c30ccd675eec66ec08f7)
3-2 设系统的微分方程式如下:
(1);
(2)
试求系统的单位脉冲响和单位阶跃响应
。(已知全部初始条件为零)
解:(1)零初始条件下,对方程两边作拉氏变换可得:
则系统传递函数为:
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image622.png?sign=1738890201-kp9SabLLACUzpafWtS5r4d6uepyZxsHo-0-2a8f617cc7d3e30f18f51540754c87ab)
当时,系统的单位脉冲响应为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image624.png?sign=1738890201-WpV2USHpbGT3Hv4WC63QpjSoE7G9sGFQ-0-5086120ca576a8e5c62e21172bee79a6)
当时,系统的单位阶跃响应为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image626.png?sign=1738890201-agwdowqxOBQQYIYOjlOg8C7F3mNFIbOn-0-1bebbd853081b6dc7329391f9b0d4df8)
(2)零初始条件下,对方程两边进行拉氏变换可得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image627.png?sign=1738890201-dAHwQ3GKbycTauk7Hm6sCPVn8O0IULXr-0-c11ec6f5821d6d5249e18d05f40e008c)
则系统传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image628.png?sign=1738890201-xqjOjgEIlljV29YE7Sc2oYMrbBOYFLwJ-0-de74c74355db19ebdc82ce51ca6c903b)
对比典型二阶系统传函形式可得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image629.png?sign=1738890201-EEWWPt60UyfJhWfOWK1NaScXHLaJYvN8-0-19101f3856181c6b8eebabbfd91f789a)
得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image630.png?sign=1738890201-7Mnwl23q0PnRclz1lm91qMeyJfxCBz6M-0-ec092a9a706681a1b88b933b14f143ce)
当时,系统的单位脉冲响应为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image631.png?sign=1738890201-u0S3juk3XASHBKhiRGy1LR3fgQr7YZ8b-0-517e6b98e04f272b79ffb48fe94f4b4f)
当时,系统的单位阶跃响应为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image632.png?sign=1738890201-SdUu6XwLTr1HBKB7IcMl4S1TLm8UR87T-0-0eea3a77018b68ab9f7653d0c1d77363)
3-3 已知各系统的脉冲响应,试求系统闭环传递函数:
(1);
(2);
(3)。
解:已知输入是单位脉冲信号,即,则系统的脉冲响应的拉氏变换即系统的闭环传递函数。
(1)
(2)
(3)
3-4 已知二阶系统的单位阶跃响应为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image640.png?sign=1738890201-Xkkhg4XT1b1i46J34jY7Zb0z69cmWP9Y-0-35befd2bc154217295623f185beb5252)
试求系统的超调量、峰值时间
和调节时间
。
解:二阶系统的单位阶跃响应为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image644.png?sign=1738890201-QqYVp8usltawx6pN62sL7dqxkdDwr8fV-0-62e7b814e550dfcb2cd220f3d6bb6a37)
由上式可知,该系统的放大系数为。
标准的二阶系统的单位阶跃响应为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image646.png?sign=1738890201-UWaxECMSbiPTGX3bl0VEh3NLuTL82zPf-0-76410507bc69030922320688fd7199d0)
代入公式得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image647.png?sign=1738890201-7DdiorshTrSIzTqUZOWJg3kE1wgpxbNY-0-d90bfb3b511d70e35cdb2e0b7c374a70)
得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image648.png?sign=1738890201-lLPKKNecYWG0hElCTBqdukgMnerVeWa8-0-543ffe599562f92253411868074e69bf)
由于,即该系统为欠阻尼二阶系统,因此,其动态性能指标为
超调量
峰值时间
调节时间
3-5 设单位反馈系统的开环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image653.png?sign=1738890201-eQIyl9X7nJ7lwaUnfDVp6pQU4FI1Bub7-0-58048a732179924e2b225175f5179fd7)
试求系统在单位阶跃输入下的动态性能。
解:由题意可得,系统的开环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image654.png?sign=1738890201-sGiXzhcvTSp593AUcg9wr7sZ2Vj8jxk5-0-286811bdc1a8e3689eff906bd110766e)
系统闭环函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image655.png?sign=1738890201-hp5Ws45zmvGXEMw5J84jKYNjSqAtamJy-0-2925ae3041abe4b443cab0a1aaea1408)
则该系统是比例-微分控制二阶系统,其标准形式为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image656.png?sign=1738890201-ovSwV5ZsMz4B0heZ6C6BU8gajynCZIdZ-0-2485a355c39073d50b862e98673bf2e6)
由可得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image658.png?sign=1738890201-DsDNWdlauwmbXnu8xzWSK8C2r8uOUS47-0-2f11a5b1bc315ad84e21eb4db4e23397)
根据
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image659.png?sign=1738890201-BG38VfZTPCNSwhUpeZfcINtgbNcekgNo-0-d00a98876db0d6ca81dfc05883a0feb3)
可得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image660.png?sign=1738890201-MAC4Mnrrq20LEl9vUPGn4HW9s6OtluLh-0-1553af6b6124db43bd5b264548b470b1)
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image661.png?sign=1738890201-0vcLGhIw9VFHe49amlEevR2dl8Z2eKOW-0-43672b1bb23925b9ce61c746911ff9a3)
因此,该系统的动态性能指标为:
峰值时间
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image662.png?sign=1738890201-WSuNI7k1FEm5ZLVABexIU7LhUmj1t1Db-0-6272cc86921304edcdf138a42ce3a39c)
超调量
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image663.png?sign=1738890201-lGWTYVQkrmEvsOUAighOQ4lkDMr38qQm-0-f966a9e549122a6781cc05efa429bc12)
调节时间
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image664.png?sign=1738890201-TdqOWBpKnn25A8Sl0g7pcBUTGiy8KOWK-0-8bf56ff1f1995a9cad174e0656a9a085)
3-6 已知控制系统的单位阶跃响应为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image665.png?sign=1738890201-ttPxDbDTC295OqGk6ndewOXJ2N2agGK1-0-6cb4e35fec3ce73d14afd1e7edc859dd)
试确定系统的阻尼比和自然频率
。
解:系统的单位脉冲响应为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image668.png?sign=1738890201-sImnwf4WZClWz1ezBqhSR5dnCNho5Io2-0-fe4acfeb356f2729a3d18e275716e502)
由、
得传递函数:
与
则系统的闭环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image673.png?sign=1738890201-tvBU2DG1hyJaQQRNR2o02ZuVaFZAP2cN-0-c425fb3a9aebf0a3b25d351c0853942d)
故系统的自然频率和阻尼比为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image674.png?sign=1738890201-URW6XsYT2Fu9dogT72aJIITuPbKxMkH4-0-f3c23afc32b2427a868c753ddfd2d7c4)
3-7 设图3-2-1是简化的飞行控制系统结构图,试选择参数和
,使系统的
,
。
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image677.jpg?sign=1738890201-cffKwuBTqWKJ5nYqGdTxrN3x8vBOOHM5-0-8abb2a35f22f79137d8b41370f186157)
图3-2-1 飞行控制系统
解:由题图可得系统的开环和闭环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image678.png?sign=1738890201-wsUUyQ3bWQvPBdWSe6tzy84qAuo0krNh-0-9cad52ccbcb5c43b0ada7ff32591d502)
对比二阶系统的标准传递函数可知
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image679.png?sign=1738890201-26F2GkpiMHQWQY4hNNtnvGy9vzR0LZ24-0-1881ee50cfeb41575d0f56310c70bbfc)
解得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image680.png?sign=1738890201-HMrg5qTQDROrkoixKMzKEkFluyh1Z1oO-0-ff203d46ba65edac5b1b0161af82a490)
3-8 试分别求出图3-2-2各系统的自然频率和阻尼比,并列表比较其动态性能。
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image681.jpg?sign=1738890201-ok3nucbE7NDatvXGyDwlTzOwSLSl0AfW-0-2181f226934a7564c813479fae51a882)
图3-2-2 控制系统
解:(1)图所示系统
将代入
可得系统闭环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image685.png?sign=1738890201-ZqIDpofft1ZhD23bHbVTNy6ct1PlBrkz-0-d0657cbdf0d859e93dc4d2d89fd227e0)
又二阶系统的标准传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image686.png?sign=1738890201-PHqdKOHlRk5uReMulIfirX0VgTDAUAn4-0-dc897153e170026af67c9158f6cc7c83)
比较可得:,
即系统的自然频率,阻尼比
,其二阶系统在阻尼
时的单位阶跃响应为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image691.png?sign=1738890201-tDoDdKpKzAE6ZwKmtHn8BAO8OmzvGY40-0-5130d701bec61ce7fe39aac591e905ab)
因
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image692.png?sign=1738890201-a6ROqtjhqmqHXwqmKGBgkAHTiXrvUzcC-0-640ac7abcd6f046d8ba0c783913a8805)
取
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image693.png?sign=1738890201-NbAD6xex5VmI6ieOUaxZ7ZfcqQYHjfW7-0-e1d270c453837fa6e8e80e7a21d9c4cf)
而,故
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image695.png?sign=1738890201-gQYCU0kJxG1NNjVfeW8CzLPN6KWv1y3H-0-8cf74c7c11ea4c134a04123d5001d292)
对于等幅振荡的无阻尼系统,不存在,也没有意义。
(2)图所示系统
系统闭环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image698.png?sign=1738890201-4fsKArqKC7fC9I9OY1lflDK3jYG0pdWE-0-8ce3e47b8e133950e0a3de0f008abbdd)
该系统是比例-微分控制二阶系统,其标准形式为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image656.png?sign=1738890201-ovSwV5ZsMz4B0heZ6C6BU8gajynCZIdZ-0-2485a355c39073d50b862e98673bf2e6)
由
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image699.png?sign=1738890201-ttLaA7dqWt7eT2o4P0o7wLYkxyqbpxy3-0-81cc5c8aac5644264507f81b0f4c70b2)
可得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image700.png?sign=1738890201-iikLlsV0QdAMkXg3A7meBkQEvZGTgxkP-0-412d17dba35f36cc7f5c52e97f7f4160)
将代入得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image702.png?sign=1738890201-dd6sStHC4Mj11rn5itJRr5EoL0UO5KLN-0-004fe654d7d5d6f599e23b1d5321aa4f)
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image703.png?sign=1738890201-ICRmTob4W4iBeEl0XolbgDkdlryA7rG1-0-0bb0a652cef306d6800e38ef4d29d4e1)
则系统的动态性能指标为:
峰值时间
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image704.png?sign=1738890201-wQTS7rnHazGeuVZwnYAvPXhvRc6okL2G-0-6bfa8304aa97cdc93afd9f4deff922cb)
超调量
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image705.png?sign=1738890201-j5xnhwbjDIw8bzstlkQ9RL3Q51q5RJkK-0-8a8a2f6f17c8c3af2b35b34663dcf658)
调节时间
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image706.png?sign=1738890201-oDWg1NOcGloCb85OVaiuZoNMjX4FYkKw-0-9d9a8059fe43c259c396ca72b7f6ac31)
(3)图所示系统
系统闭环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image708.png?sign=1738890201-JYnp80MbmM4kMtAkHDHYu59yNQ56TAK2-0-a6ca8dc6731af5a61979971906d1dc47)
系统的自然频率为,阻尼比
,则系统的动态性能指标为:
超调量
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image710.png?sign=1738890201-lL802GdO648L2Z34uSvZtDchVUqP6ACI-0-a2876c3d96931086ccb6b936d4107045)
峰值时间
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image711.png?sign=1738890201-rEm1Xmna8utALgPR0NmwmCKjPu9arY7j-0-05ab7decf0ae433f6acbeb38636fa9d6)
调节时间(
时,有
)
则图3-2-2中各系统的动态性能如表3-2-1所示。
表3-2-1 各系统的动态性能
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image715.png?sign=1738890201-tDJ3DH56Lw2Tb95rYt4UOqsB6Nm1QDFs-0-b09935485af3cf9f7ea86f4fe286e798)
3-9 设控制系统如图3-2-3所示。要求:
(1)取,计算测速反馈校正系统的超调量、调节时间和速度误差;
(2)取,计算比例-微分校正系统的超调量、调节时间和速度误差。
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image718.jpg?sign=1738890201-xAQgGOLSbnRTPTb7w1uKW8ykeETC76MR-0-d0bec5d0df61ccbeb4f3d5d22cd55f7b)
图3-2-3 控制系统
解:求系统的动态性能指标。
(1)取时,系统有
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image719.png?sign=1738890201-hzeNAP88ij0jgsZpCjJS4GbDo0XJsWxT-0-d01859a05f06a1debf8268142fb85eb6)
整理得开环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image721.png?sign=1738890201-N2UHGI4zUupisEkmiBCekbtpDZ9aQNJS-0-57363417f13257f7d7ab74f28567ca1a)
由得系统的闭环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image723.png?sign=1738890201-rMSjMu0gNCcjcMlRjZY9a3of45GaNaW5-0-4795c04bd7ccbc82ce2580d6d7df1925)
由开环传递函数可知,该系统是I型系统,其速度误差系数,系统的速度误差为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image725.png?sign=1738890201-v2HwPINub8MW4aDoMW8pP6bcUZPeTSED-0-a30beea612a132b87e2659a0c5d619c2)
由闭环传递函数可知:
的系统的自然频率:
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image727.png?sign=1738890201-TETYyV27DfAhMP4VePMJdlSJHvNRNdVg-0-8b80d826a9d961b2f6b0f3b283e410a0)
的系统的阻尼比:
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image729.png?sign=1738890201-OdCT5XlMRCeKZwI4Ph507S1S533UpBWB-0-c498e4c03a05ff1433e02284bb7368cb)
因此,系统的动态性能指标为:
峰值时间
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image730.png?sign=1738890201-Vl5V38qHTsCCeW5Lq54BVZJojJyxznxv-0-405741ea1e8b3badb1b2b3dbf3c97a02)
超调量
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image731.png?sign=1738890201-Xw5oMr53YxLc1fvFkLweaaNeJ2JEWkiR-0-bbbef15bb7e43f11ca2f121ce2614c44)
调节时间
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image732.png?sign=1738890201-lrGLFy9Od5k2kfRz1Fewz4XAYuTVlOmy-0-3df1ea198adaa1fab3a3d2c098c12728)
(2)取时,系统的开环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image733.png?sign=1738890201-seJILvdP9nU1Y3uNALvrpDP8Rqk3dQPH-0-190497458ba3553611d06fd244564aee)
则系统的闭环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image734.png?sign=1738890201-DypBMPO9GnYrvq3JuXZAaLpQCAQ07lAp-0-f014c606e3d8ce3036e665f4c04d4570)
由开环传递函数可知,该系统是I型系统,其速度误差系数为:,系统的速度误差为:
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image736.png?sign=1738890201-BRfbaHxeBZchj5LzzT5yrxVPe8sOewd3-0-40c8bb95cb8fa2976b27b1d5fb210275)
由闭环传递函数可知:
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image737.png?sign=1738890201-8MkcxUpNXtZmPHLxvGVHVGZdb7uUhpcT-0-81b6c5c3f37724b18d59072b05ebd1a5)
此时
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image738.png?sign=1738890201-g6wIdzCiWr5o6eMNw5JuwwkKm3XYfMdK-0-ca894dc2084c2f637a5fb7bb545c9cde)
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image739.png?sign=1738890201-sMFsqCE7W3gGRo0NDwyoqK76PYUiGc4K-0-3bbea97b222c900d4cb4aa196c237e67)
因此,系统的动态性能指标为:
峰值时间
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image740.png?sign=1738890201-jo8nt8FakycWADd6cIgrla3Q3VMRLQVm-0-4574adc9b631be9f592c6888902ec758)
超调量
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image741.png?sign=1738890201-Nd4rGRF40WFIlL3JnO7jHng4TabQ5TDt-0-3aa452c93254919db17969042ac3360b)
调节时间
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image742.png?sign=1738890201-RSprZP4y90Tvn4HZISPifRNjLROH4LU0-0-14c4134f8bb0414ce911b619a49c5348)
3-10 图3-2-4所示控制系统有和
两种不同的结构方案,其中
不可变。要求:
(1)在这两种方案中,应如何调整,才能使系统获得较好的动态性能?
(2)比较说明两种结构方案的特点。
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image745.jpg?sign=1738890201-3q0HEbmeTTGmDfj2TPRUl8rNflZY0MqY-0-cc38b08ca22d25533c788c61aeec6be5)
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image746.jpg?sign=1738890201-8tO8W1N3p9bBNxiz6sk4K414epm6FAHf-0-98169a837fb15d69e6007e69a617a1da)
图3-2-4 控制系统
解:设,
,则开环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image749.png?sign=1738890201-9wDgx3H9pLgzdSc2ZxihW0IHk9YsrglE-0-3c00bfb2285ce42828239a47761dd3af)
闭环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image750.png?sign=1738890201-IY4LBMtG8u1d6ftZAXSuQSYXQqME9Isk-0-ff3b144a92772d5ae2baf3bf8130ff85)
方案测速反馈控制系统:
开环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image751.png?sign=1738890201-bY3raKLJvuAB85bqklzPyFxVvYnYV4RL-0-e68ab098f8a98573ca991cfa4c075515)
闭环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image752.png?sign=1738890201-bb7KLZG2tikPNbknll85PW2BNHKRT0MC-0-da5123946296c84a927226148b45832b)
方案比例-微分控制系统:
开环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image753.png?sign=1738890201-fjZ9hyZpGi5QxsITVuVDTLEifvVxwDYF-0-69c91c4603488134109c54bb7b93119e)
闭环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image754.png?sign=1738890201-Ll6SQQofQbOzWOfEqJpgufXW4yEymHsf-0-8023f7bac6ddcfb733615c97e80645ab)
则原系统、测速反馈控制系统与比例-微分控制系统均为I型系统,其静态速度误差系数分别为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image755.png?sign=1738890201-IHv8D4lcl6u8Q8WXF1fAlRGeMXmJlYXC-0-4e15b59690723268c0f3e57808e8d544)
(1)参数调整措施:
方案(a)引入速度反馈,可以增大系统的阻尼比,达到改善系统动态性能的目的。对的选择,要使阻尼比在0.4~0.8之间,从而满足给定的各项动态性能指标。但是,测速反馈会降低系统的开环增益,加大系统稳态误差,考虑加大原系统的开环增益。然而,增加
又会导致阻尼比下降,超调量加大,应考虑增加
。
方案(b)比例-微分控制可以增大系统的阻尼比,使超调量下降,调节时间缩短。由于采用微分控制后,允许选取较高的开环增益,可以减小稳态误差。然而,增加又会导致阻尼比下降,超调量加大,应考虑增加
。
(2)比例-微分控制对系统的开环增益和自然频率均无影响,测速反馈控制会降低开环增益。对于给定的开环增益和指令输入速度,后者对应较大的稳态误差值。比例-微分控制对噪声有明显的放大作用。测速反馈控制对系统输入端噪声有滤波作用。
3-11 已知系统的特征方程为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image759.png?sign=1738890201-Vk1rBKHxgYhCYpjqx1zUgEwlE7NhCK63-0-c0bef89fb3057da58dfcad518585c42b)
试用劳斯稳定判据和赫尔维茨稳定判据确定系统的稳定性。
解:(1)用劳斯稳定判据确定系统的稳定性
列劳斯表如下
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image760.jpg?sign=1738890201-Tj1e7oZnqWBJTPMSSlbynlHeWkrae1Jg-0-42efcdd3768076f512b70d8b86776883)
表中第一列元素的符号有两次改变,则该系统在右半平面有两个闭环极点,即该系统不稳定。
(2)用赫尔维茨稳定判据确定系统的稳定性
由特征方程可知n=4,,
,
,
,
若系统是稳定的,则需要满足3个条件:
①特征方程的各项系数为正;
②
③。
系统且
,但
,不满足条件③,因此系统不稳定。
3-12 已知系统的特征方程如下,试求系统在s右半平面的根数及虚根值。
(1)
(2)
(3)
解:(1)列劳斯表为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image775.jpg?sign=1738890201-T46jptbUSZz4TVAgnyWAlgHiIb7vQzGP-0-473a68604c124bd0340feacae3df79d2)
表中的第一列元素全部大于零,所以系统在右半平面无根。
由解辅助方程:,可得:
故系统有一对纯虚根为:。
(2)列劳斯表为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image779.jpg?sign=1738890201-Nu8vA01eeJuy3pVdEBxYwi3iCn37CRYp-0-9bc7217935afc292861ecd0dcf299e6c)
表中的第一列元素符号改变两次,则系统在右半平面有两个特征根。
由解辅助方程:,可得:
,
故系统的一对虚根为:。
(3)列劳斯表为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image784.jpg?sign=1738890201-hOPUypziM1NH16YjH1BUEhCFpyGxFd20-0-b620c6b59203f6a90a5c380190d43daa)
表中的第一列元素全部大于零,则系统在右半平面无根。
解辅助方程:,可得:
故系统的一对虚根为:。
3-13 已知单位负反馈系统的开环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image788.png?sign=1738890201-ojErxMFZlMBr5MtKjsgEamcD0m8sEhZy-0-55a57d8111ff1f5a6c2f5f84031d55c6)
试确定系统稳定时的值范围。
解:由题知系统特征方程为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image789.png?sign=1738890201-RyTkOsvXT1blny0goB8hLK0EjfvZChqz-0-b280a6522c7b13585b3f0d65737b8199)
列劳斯表如下
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image790.jpg?sign=1738890201-l7hecqNMGml3IrrChjEdXwdAG6bCBJjj-0-ff2e841a4764259da3583be9f0404eac)
由劳斯稳定判据可得,使系统稳定的需满足如下条件
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image791.png?sign=1738890201-Fy2ATOC9fDAzu8gmuzhJ9Oorktur9App-0-9a3dc3aa98f38bef699bae73738c776c)
解上述方程组,可得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image792.png?sign=1738890201-4xiEUA7871L2B2311XRSKDrrf8xghQkr-0-bac4e16a6e7c04fb451d985f7ae12831)
即当时,闭环系统是稳定的。
3-14 已知系统结构如图3-2-5所示。试用劳斯稳定判据确定能使系统稳定的反馈参数的取值范围。
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image795.jpg?sign=1738890201-nCJxo8uzFCyvqwgSKMafUaRzLpeng3PX-0-5c2da2547274e04ada67c0d9c76ad808)
图3-2-5 控制系统
解:由题图可得系统的闭环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image796.png?sign=1738890201-xuvrdO3PjQduOJA95CONi5uGy3NF2gtU-0-ea8c08614d2dd0f1dc4b78e1f3191402)
其特征方程为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image797.png?sign=1738890201-04afSw17MBDXL9G7aptpCiKE1vLPia7k-0-f816f48ca4fa1e35689e97b5af09a90a)
列劳斯表如下
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image798.jpg?sign=1738890201-HqY6r8gGn3Vz3lL8L4q5osvTWdPv3riW-0-e2a6fd78b0bb91b7a17f964eac0682fa)
由劳斯判据可得,使系统稳定的满足以下条件
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image799.png?sign=1738890201-3CQYTPbGlCRSypOxxu2hQODbtACrEk18-0-7dba2cab95d0d0caead5661ca93194e8)
解不等式组,可得。
故系统稳定的反馈参数的取值范围为
。
3-15 已知单位反馈系统的开环传递函数:
(1)
(2)
(3)
试求输入分别为和
时,系统的稳态误差。
解:(1)由题意可知,系统特征方程为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image806.png?sign=1738890201-5XLsaJEt6cN8R9p43S6sFmP6Xr7piDyP-0-455af11a0404acf7c226b5883b2f542c)
由赫尔维茨判据可知,且各项系数为正,因此系统是稳定的。
由可知,系统是0型系统,且K=20。
当系统输入为时,系统的稳态误差为:
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image810.png?sign=1738890201-sXXq2Q1nG9gsdGqAT96d2qa0fTI8bq29-0-6ba18b31e8bcb3baff7bc05142490045)
当系统输入为时,系统的稳态误差为:
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image812.png?sign=1738890201-megUNjTerNXqFH5agHtvijVqYgllQ4Kp-0-2e7dcba535edf7f68501c7301ef184fd)
(2)由题意可知,系统特征方程为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image813.png?sign=1738890201-zdAlNp2Mv3syfvAIinUHUTvqoKRsNSH1-0-1a3f20da0068598cc727ded1d08a43ab)
由赫尔维茨判据可知,,各项系数
均为正,且
,因此系统是稳定的。
由可知,系统是I型系统,且
。
当系统输入为时,系统的稳态误差为:
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image819.png?sign=1738890201-uF4wHw6HhPZnmlM58xxehVPHSRCi7Yyr-0-3bb9775323f48eb32d446ae46395de5c)
当系统输入为时,系统的稳态误差为:
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image821.png?sign=1738890201-zuQ6GK48SwlVx24OQsESWfbUqkvaiWC5-0-ca1dc0e7cb2e2b6b88008f6b7b457cec)
(3)由题意可知,系统特征方程为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image822.png?sign=1738890201-g2FM6U13bHOgNRwAuUzt0yAoGTopHqar-0-cbc58715445bfeb6edf6d220e347dcc7)
由赫尔维茨判据可知,,各项系数
均为正,且
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image825.png?sign=1738890201-EP8BuFXWYYUho1R6aTgMlJ0BxfjS7Ciq-0-a2022a5dc5951bd1304b78993f923812)
因此系统是稳定的。
用终值定理求解系统的稳态误差,有
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image826.png?sign=1738890201-PuNGHQp5mwJT7Cbhc5ifl03YcmO3OvIg-0-6d974691330c7b226cecf3515b67e1f8)
当系统输入为时,有
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image828.png?sign=1738890201-lLmELDt0xXQDgwvhpevv7w4Y296GuaCA-0-37c00328130cef663695aeaec0831df1)
当系统输入为时,
,故
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image831.png?sign=1738890201-AxjPNLFpWAyOzD86bxT1CMPBmbOew51l-0-b93b55ada79207b641ec3e3919f14ddb)
3-16 已知单位反馈系统的开环传递函数:
(1);
(2);
(3)。
试求位置误差系数、速度误差系数
、加速度误差系数
。
解:(1)根据静态误差系数的定义可得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image838.png?sign=1738890201-4Kh2PxT07Seols8jz6a5C0aJ4Qp9lTa7-0-cd41e9ba23dec70b41d1a547968c7365)
(2)根据静态误差系数的定义可得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image839.png?sign=1738890201-uh5WwxAtHYbLt6dYUVJdPr4EYe9QXHho-0-8dea0498d77f2ac18314bf2fcd0bb09d)
(3)根据静态误差系数的定义可得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image840.png?sign=1738890201-uqTUfD8ijOpcJJ6sAB4FidXXYlbPnZYZ-0-7b28ed10bc9c7fcff5b5aa6eddfbb30b)
3-17 设单位反馈系统的开环传递函数为。试用动态误差系数法求出当输入信号分别为
和
时,系统的稳态误差。
解:由题意可知,系统的误差传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image844.png?sign=1738890201-0lLHsl2o3X4Zs2rGKJvHQwc0FdIWcRBC-0-482f8c639594ad72eb292d0fa1fb83a3)
所以有
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image845.png?sign=1738890201-A8jSUPAeQ3E8igXEHx5y6s7xHPlqtigR-0-caf0df47662e1aa0d4fff07e43b1ed52)
故动态误差系数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image846.png?sign=1738890201-ngjiERaTOhBo74fqPGWSUVLukDrpMdFw-0-19e2ee025c4433d3399f75b0256d6b6e)
本系统为I型系统,有,其中Kv为静态速度误差系数。
当时,有
;
当时,有
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image850.png?sign=1738890201-a2dCM76gN1NWW8b7HCcVTgOoVx7RSw3K-0-52a5cad5038200a60ca0310bb4d6a068)
将上述各式代入的表达式,可得稳态误差为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image852.png?sign=1738890201-BaQ7lDmyyLCNn9yehUZJLHSVRqdJRtFr-0-3b7338a0a8da89975cc104e7f533163b)
3-18 设控制系统如图3-2-6所示,其中
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image853.png?sign=1738890201-lOc0hvih05xGiif5f24HqNCZRNMtVazg-0-b56f1cb463acde1af485cd81d8ac2436)
输入以及扰动
和
均为单位阶跃函数。试求:
(1)在作用下系统的稳态误差;
(2)在作用下系统的稳态误差;
(3)在和
同时作用下系统的稳态误差。
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image857.jpg?sign=1738890201-orxXy7n2f39GwZgKFv47LryRU5hEPqMk-0-d21b364e2dace4bca0be180f12ff01de)
图3-2-6 控制系统
解:(1)误差传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image858.png?sign=1738890201-buhjwnRrzuXIy1d9Lpt4ZlqLxSPw68AE-0-34bbc2cd02094f419893fa3e2b02a63b)
则
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image859.png?sign=1738890201-8gtZiDE0XDpqgNVlxIX0kV0P1ImTZcVN-0-ea7940dcd7680c21785511648b15f091)
由终值定理可得系统的稳态误差为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image860.png?sign=1738890201-IDqOeISbt4v4G8hhJecKjsTnkMkrWYw1-0-2e873dbeb9f0e2ca2780c5d96c6ca67f)
又
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image861.png?sign=1738890201-8ZYyvQO3txzYBdvTL5Uxjs6vUA9fFNFa-0-e320266242dea249b452f242b783944c)
故
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image862.png?sign=1738890201-eLrROkmccIU2lOtpHlgkNJXVVMPlrV0d-0-dcf70ce502ebf828805fed32c20a00ae)
即在作用下系统的稳态误差为
。
(2)在n1(t)作用下系统的输出为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image864.png?sign=1738890201-MDsBpSkKaLzeSl6z3DU3j0qG0Ao88mjd-0-f5d32d08cca67729a552a20a5c2adccf)
故n1(t)引起的误差函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image865.png?sign=1738890201-G5iABTcgX72GkFAwUZbYqCJ6u3sRxI1a-0-f62ca774a4b274f16345981df076ed11)
此时系统的稳态误差为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image866.png?sign=1738890201-iVZKzvalxVWdZ2YLeGD9qZfHBRed17A4-0-5f8d39d3fd06cb8e56dcec9e74481cba)
又
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image867.png?sign=1738890201-bxzbbaNaIf6c4XSPSfRQuOvZ5HK3nQuf-0-46e96345d4f537c0e1e7de3c6b22bfea)
故
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image868.png?sign=1738890201-d0kDBEc6ID5MSRuzKQpsEJI98thuJl3J-0-a9133e921c92ea3a2d18dac0916dedcc)
即在作用下系统的稳态误差为0。
(3)和
分别作用下系统的误差函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image872.png?sign=1738890201-vVP1Sw4q36YT3ZsbO4LR3stCAB9kXaSs-0-03c9e0405eeed3dd4d94e4bdf161f324)
故和
同时作用引起的误差为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image873.png?sign=1738890201-BxXAFWjtdSYvuJ64eeZOjgeLxvFbb0tr-0-2f5adedebbb6e05e6d83745abba062fb)
此时系统的稳态误差为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image874.png?sign=1738890201-ifw5opTVdr5LePRfcJKWGh6dTeR3ObV3-0-92e8f5cde0a24308fe301b126f3a0b72)
即在和
同时作用下系统的稳态误差为0。
3-19 设闭环传递函数的一般形式为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image876.png?sign=1738890201-LplwFunlTIZM3XuQlWmLh2YTfpvKRVE6-0-2c554168ce784c47843e3a92c19854dc)
误差定义取。试证:
(1)系统在阶跃信号输入下,稳态误差为零的充分条件是;
(2)系统在斜坡信号输入下,稳态误差为零的充分条件是。
证明:系统的误差传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image880.png?sign=1738890201-bzePrhOLYwaplbQq56g8Z4s9oNA0XorV-0-65836ebdee85933ecb070cfe99bdfe23)
(1)当时
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image882.png?sign=1738890201-Qx4kMBT1ZqiKh1TNOeYrmyyEAdpf8D34-0-477f0a30ef6d2ef95d0571332bb83aba)
由终值定理可得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image883.png?sign=1738890201-spFcokNgKihBY1T94IsOM4esC9NzEIPG-0-b0231ea5b8723ab744ceca283787fe46)
因而充分条件得证。
(2)当时
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image885.png?sign=1738890201-J1hn0zEqCBduU5oxNqJg4CUdwGV2XRDj-0-a7ce81f72faa839b2296ab7a1fa42f6b)
由终值定理可得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image886.png?sign=1738890201-cOnNCOQhqpQfu19V1M4fibQcuMkp8XV2-0-0583767f1d51f280acdfb263cc8bc79e)
因而充分条件得证。
3-20 设随动系统的微分方程为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image887.png?sign=1738890201-iCC0iAepM4IBNzQersJqMrANxewMm6l3-0-2706b6592317979ad728b883817c4451)
其中,,
和
为正常数。若要求r(t)=1+t时,c(t)对r(t)的稳态误差不大于正常数
,试问
应满足什么条件?已知全部初始条件为零。
解:(1)对题中微分方程进行拉氏变换,有
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image891.png?sign=1738890201-i8IerUnARB8fZVATgCqdQUtRjJjkP4dS-0-cd3f2ebfa7b6757d7c7fb9b6d032f9ff)
则系统的结构图如图3-2-7所示。
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image892.jpg?sign=1738890201-7tDKF5PGdeuKmD2URFOzsQc7brLyH5z2-0-4b13df3c3b6d6d9d25759abbd90b8b36)
图3-2-7 系统结构图
(2)由(1)中结构图可得闭环系统传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image893.png?sign=1738890201-vidl0d6aNkBn2kCv0bXFOZaOtu9IauIR-0-4e910f03dc3a7f20b82218fb9da92e9f)
其闭环特征方程为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image894.png?sign=1738890201-jTemDc61DuCcndkVjkK08fSYGE4sZliE-0-70a4b4571c7c0793abac7929560645fe)
列劳斯表如下
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image895.jpg?sign=1738890201-TxmcXQHaA4KB7FWCZULblyzYbGxEvH12-0-5f5887b753d517be96f365a00ccb5ac1)
在,
和
为正常数条件下,使闭环系统稳定的充要条件为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image896.png?sign=1738890201-1lyrVIg22bZ0dK7O3L4g4LbQrzJYet8c-0-871dc84b04803afe7619a7abbf1390d0)
(3)定义系统的误差为E(s)=R(s)-C(s),则
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image897.png?sign=1738890201-6ZEtto1gtIH6CiyLslC8KQiLs0ZOykHX-0-a31d9e332ab69536266cc52c741a56f3)
且,则由终值定理可得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image899.png?sign=1738890201-GhYSeX1R7w1UiB8TcBFONoY7mLW01NYL-0-bdc31c495cb8ca43b82fd986db254cec)
令
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image900.png?sign=1738890201-i20rme7xlY7Wuc8vWhzbXQsn1IX9usxv-0-dbf56d053daca8ba31c5d6d054d18028)
得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image901.png?sign=1738890201-HRJ3cu1zrcz1IVNJVSreCut6x8QetSUE-0-b31b2666393a56154d227166166d2181)
结合使系统稳定的值取值范围可知,满足题意要求的
值范围为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image902.png?sign=1738890201-nMnOQ2oVYyQIX7JWaSuFGK6uUdrPAW8k-0-e836be8ca2bcbafb3de02972ebf82a9a)
3-21 机器人应用反馈原理来控制每个关节的方向。由于负载的改变以及机械臂伸展位置的变化,负载对机器人会产生不同的影响。例如,机械爪抓持负载后,就可能使机器人产生偏差。已知机器人关节指向控制系统如图3-2-8所示,其中负载扰动力矩为1/s。要求:
(1)当时,确定
对
的影响,指出减少此种影响的方法;
(2)当,
时,计算系统在输出端定义的稳态误差,指出减少此种稳态误差的方法。
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image905.jpg?sign=1738890201-FkEofzmUq7Cs2TusWU9DwSyKRoUnLQcU-0-64e02704de86c1759116355d677d34d8)
图3-2-8 机器人关节指向控制系统
解:稳定性分析
闭环传递函数
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image906.png?sign=1738890201-FcZEoB4H888FjQ4AeG7M20n3GcxE2XKi-0-db4c365178c192ac424862f24d80c69f)
其闭环特征方程
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image907.png?sign=1738890201-SZ2bwnwkGBmZS0ZKZtQpPa33e2PlnUWN-0-c105983fdb6a9a3c41658e480fc1722d)
当参数,
,
,
以及T均为正数时,闭环系统一定渐近稳定。
(1)当,
时,闭环系统的输出
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image911.png?sign=1738890201-dypFNeMEW04jR6WqXFC2nCNAIWqzYgJo-0-fbb9f15a07983f9dd72a38c095559098)
误差信号为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image912.png?sign=1738890201-o1V05UAZwr5rUPw5pJiyehIY2qnpDXfl-0-761bab0bd0faa9fb8deb99cee17390e1)
则扰动作用下的稳态误差
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image913.png?sign=1738890201-M4W885JAA7qWTm9B3zzBDIQriCJotcbs-0-d64cfc481d6ecff995d2be6c3c6869a0)
增大和
,可以减小阶跃负载扰动对输出关节角位移的影响。
(2)当,
时,系统的实际关节角输出
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image914.png?sign=1738890201-wB4Z8hvylMuI7d8SRusnPljxyEEM4tYh-0-2ff4f9999e0540ddd605114e61bbe7c4)
位于系统输入端的误差信号
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image915.png?sign=1738890201-iaUMfqZSN3nJ4qVnDZa2Owq6Jza9X4Wv-0-c365c3ca8c07d111becca36d84398386)
由终值定理可得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image916.png?sign=1738890201-FpgKGZKMiZhx1vYjQ21cJov79iGqtNOV-0-bc1e990fcbc2ccc95c4699722cbe1103)
表明在无负载扰动时,预期阶跃关节角输入不会在系统输入端产生稳态误差。
位于系统输出端的稳态误差
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image917.png?sign=1738890201-VqOMALBpsdLekE5kPpDb0pMrNkCLeAOu-0-33a8b881282f8205fedee225fcb9a35b)
在无负载扰动情况下,预期阶跃关节角输出会在系统输出端产生稳态误差。若取反馈系数K3=1,则可使essr(∞)=0。
3-22 在造纸厂的卷纸过程中,卷开轴和卷进轴之间的纸张张力采用图3-2-9所示的卷纸张力控制系统进行控制,以保持张力F基本恒定。随着纸卷厚度的变化,纸上的张力F会发生变化,因此必须调整电机的转速。如果不对卷进电机的转速
进行控制,则当纸张不断地从卷开轴向卷进轴运动时,线速度
就会下降,从而纸张承受的张力F会相应减小。
在张力控制系统中,采用三个滑轮和一个弹簧组成的张力测量器,用来测量纸上的张力。记弹簧力为,其中
是弹簧偏离平衡位置的距离,则张力可以表示为
,其中F为张力增量的垂直分量。此外,假设线性偏差转换器、整流器和放大器合在一起后,可以表示为
;电机的传递系数为
,时间常数为
,卷进轴的线速度在数值上是电机角速度的2倍,即
。于是,电机运动方程为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image927.png?sign=1738890201-mKUV45VB14cTThpKJjH1EtqmbmXItLJF-0-56809197b87bcd41365d4e8f1929143d)
式中,为张力扰动系数,
为张力扰动增量。要求在所给的条件下完成:
(1)绘出张力控制系统结构图,其中应包含张力扰动和卷开轴速度扰动
;
(2)当输入为单位阶跃扰动时,确定张力的稳态误差。
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image932.jpg?sign=1738890201-NfPUSbjsiZoklMuf5lCLXKqtoLYAVN5v-0-05ea2fc5410cf0acfea288030fbb1c9c)
图3-2-9 卷纸张力控制系统
解:(1)系统结构图如图3-2-10所示。
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image933.jpg?sign=1738890201-CJfPoVaOZYWJUEewwVHsXLSKVe6nEd24-0-1b45cab7c913436a3f2aa3f4fb3f6823)
图3-2-10 张力控制系统结构图
(2)该系统为二阶系统,只要系统中的各参数为正值,张力控制系统始终是稳定的。
令R(s)=0,ΔF(s)=0,则在作用下,系统的输出为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image934.png?sign=1738890201-vSPgWtfzf3XKRj9nNFJw1myLOmLXJuKn-0-7fdc3b78ca548220ab1e2a4a1d50b865)
误差信号为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image935.png?sign=1738890201-cySP9IKYNT7TWNnEw00SXgiD1To2D2aZ-0-8fb6f3e7012dcd98a53823bdfcc5e547)
张力稳态误差为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image936.png?sign=1738890201-CQgEdKcx7DtXV6D71ZOpIFVjCJheSLh7-0-b96d57b42d7dcaa058b1f3cccb7a3bf9)
减小K1或增大K2,可以减小卷开轴速度扰动产生的张力稳态误差。
3-23 现代船舶航向控制系统如图3-2-11所示。N(s)表示持续不断的风力扰动,已知,增益
或
。要求在下面所给的条件下,确定风力对船舶航向的稳态影响:
(1)假定方向舵的输入R(s)=0,系统没有任何其他扰动,或其他调整措施;
(2)证明操纵方向舵能使航向偏离重新归零。
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image940.jpg?sign=1738890201-cDte042nIhTaDzkv4OFlFsG9tXxoBMXd-0-020c3c5233cd8606a10b49ae93d7bf0d)
图3-2-11 船舶航向控制系统
解:(1)令,
在作用下,闭环航向偏离输出为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image942.png?sign=1738890201-VMxVirjoBRszjzXtPzr6J5WdLtD1eBON-0-b6874517d49e399a4600a462ca34c2ee)
稳态输出为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image943.png?sign=1738890201-HO7hVH0lhMnwniQcCNP8RpBahgBgBj0V-0-98a823c42711fde7d3ff52ea7a66a887)
当时,有
;
当时,有
。
(2)在R(s)及N(s)同时作用下,系统航向偏离输出
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image946.png?sign=1738890201-DhjHEOXVef1LUfg2EjojgqRHW1iZScDg-0-88b5cd96033798692e225bb6a0458144)
若选,可得航向偏离C(s)=0。
3-24 设机器人常用的手爪如图3-2-12(a)所示,它由直流电机驱动,以改变两个手爪间的夹角θ。手爪控制系统模型如图3-2-12(b)所示,相应的控制系统结构如图3-2-12(c)所示。图中,,
,
,J=0.1,f=1要求:
(1)当功率放大器增益,输入
为单位阶跃信号时,确定系统的单位阶跃响应
;
(2)当,n(t)=1(t)时,确定负载对系统的影响;
(3)当n(t)=0,,t>0时,确定系统的稳态误差
。
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image957.jpg?sign=1738890201-AdLUrErvYewDuBZRkibN6MtmsDiRoMx9-0-49fad30830254e405e69ad999008231b)
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image958.jpg?sign=1738890201-96HBJRehrfvqB559vFqYV4jejwooYfK9-0-287caf427c92943ec849636cb2d9a34f)
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image959.jpg?sign=1738890201-ns5Ii5IRnhcjXQcyFwNLzv4ERdGASWV5-0-e4d0dc2d2883e55b73835a4fcaabd426)
图3-2-12 机器人手抓控制系统
解:(1)由题图知系统闭环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image960.png?sign=1738890201-o7ZkB7c679kNpEi53HjjAlrrVIFP4JJd-0-b4e8b783b79cfad7847f991fc23f89c5)
对比典型二阶系统传递函数可得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image961.png?sign=1738890201-McO4tGHVJhscwdLK80NTqXhr6zcCmAJs-0-01874a801a4882ac57e9827e2e6ed1da)
则系统单位阶跃响应为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image962.png?sign=1738890201-buqsRtKOWkrqYIT4vf8gJNKsGmxR37lO-0-618bab2f33ffd70544e27621c8ba3b02)
系统的动态性能为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image963.png?sign=1738890201-BcWP4XXB0EeAYCgGkoG0xJjwGJTWi2ep-0-52f497e77c85dea7da875156fdd18847)
(2)令,则
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image965.png?sign=1738890201-VeVoJwLlZx6ftb8ktwIEq6lQ0xfyu9hX-0-c1902bf2f084c676926c7f7eb91f6724)
表明扰动输入幅值在输出端被削弱600倍。
(3)已知,故有
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image967.png?sign=1738890201-enAZlihlw1kDuVYiNkausglfkJGuvjyd-0-daa21c180c5679aa45c8a60772bb616f)
3-25 1984年2月7日,美国宇航员利用手持喷气推进装置,完成了人类历史上的首次太空行走,如图3-2-13(a)所示。宇航员机动控制系统结构图如图3-2-13(b)所示,其中喷气控制器可用增益表示,
为速度反馈增益。若将宇航员以及他手臂上的装置一并考虑,系统总的转动惯量
。要求:
(1)当输入为单位斜坡时,确定速度反馈增益
的取值,使系统稳态误差
。
(2)采用(1)中求得的,确定
的取值,使系统超调量σ%≤10%。
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image973.jpg?sign=1738890201-EjqWVa5K0wgygj6oQSElHQONNKZKG7BS-0-1ee341e7dceba9b7d265043d20b381b4)
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image974.jpg?sign=1738890201-izQlakAFvSYf8jgUEqupc0gKp4ltrXcW-0-c6e7484e79f37372926315b9a2367183)
图3-2-13 宇航员机动控制系统
解:(1)由题图可知,系统闭环传递函数
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image975.png?sign=1738890201-yvwEnukS5FX13AcKVUOQx3NDJrL6iMft-0-b7c3d075b9547ae51ed8dd90840dfd9a)
误差传递函数
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image976.png?sign=1738890201-m1W9may1ue969qtbENcSBYr8Iw12CcAd-0-1419ba9e88ffcfaef5c9daa4179ace01)
稳态误差
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image977.png?sign=1738890201-U9v8yjaxYboOEJCIgdQS1pXspr5dylvf-0-0ce0d183f795e5ee550989b276a69ea3)
因,故
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image979.png?sign=1738890201-GapoANLOIZx1P8mQuxOM932pPibMl1KY-0-197a0a067478a896ada17b2cecafcd46)
由于要求,因此应有
,取
。
(2)对于,取ζ=0.6,
,则
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image984.png?sign=1738890201-jIb6y6hBi5aXEZ9BIishYOQ8VG6QPeh0-0-510d8fb3c6bca1944f8370404dbe629b)
即有
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image985.png?sign=1738890201-IcaFQS7yy0Ywek4HQknjPmr2mPNrOyRp-0-571adb66764ad119ae95a25b0d2d11e2)
代入J=25,ζ=0.6,,可得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image986.png?sign=1738890201-0n0PeajPgxfOTibim4kMToYgsGgef3f9-0-7f2d946e12071e325d027fae39585061)
显然,必有
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image988.png?sign=1738890201-Xyrw6SSv6oz5ga0ko2iriPS6HQO7Jqrg-0-358c2b6b382cfaa6f789e008f588feee)
3-26 在喷气式战斗机的自动驾驶仪中,配置有横滚角控制系统,其结构图如图3-2-14所示。要求:
(1)确定闭环传递函数;
(2)当分别等于0.7,3.0和6.0时,确定闭环系统的特征根;
(3)在(2)所给的条件下,应用主导极点概念,确定各二阶近似系统,估计原有系统的超调量和峰值时间;
(4)绘出原有系统的实际单位阶跃响应曲线,并与(3)中的近似结果进行比较。
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image990.jpg?sign=1738890201-3mj2pqOI0lPLp2On3H2EbvHgNJqnrjhU-0-a6712989383016daaeb4851a69e8447b)
图3-2-14 滚转角控制系统
解:(1)闭环传递函数
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image991.png?sign=1738890201-MnpfjkuIrVBROpItRr3hwshuxVU0KJTl-0-0eb6e4d7844526e9dacb94ef12d365b8)
(2)其特征方程
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image992.png?sign=1738890201-MOkp4lES7Q2BYArVWNShH58h9js5jyRj-0-197d42a60267fede78f3f13e8d845329)
将0.7,3.0和6.0的分别代入特征方程,可以得到相应的特征根
①当,有
,求得
②当,有
,求得
③当,有
,求得
(3)①当时,有
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1002.png?sign=1738890201-tFyRVESvppag63WrYWZmFlv3lEfA0rim-0-07b91b128b360a294fd9dc110d1dcfa7)
令
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1003.png?sign=1738890201-Xie9bZaa55D7luJCMJjvyRyZy3Qxldjy-0-9313352a2a85a63f9780da3355d136f7)
有
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1004.png?sign=1738890201-BZASfRUiOlpRYIiAcllpvsohW7Y2jndK-0-5da6c24ca5fd30d6abc508cf5c54bb9b)
得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1005.png?sign=1738890201-CnRUi6dRIlqjRBScLr23GY8qokz3Cg8s-0-72181cc888aa707f5573936690721f06)
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1006.jpg?sign=1738890201-eX9yP4sbtGtbWzQjHHSvUNhols0ULaLz-0-133adb087c8a6c9e3d6e6b17a6b0dc11)
图3-2-15 飞机横滚系统单位阶跃响应曲线(,MATLAB)
②当,有
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1007.png?sign=1738890201-7tO440EbPstJGvbcrwdBLNcE0nGvr6dY-0-3f37fdda79bcb1c2410cb917af06b2d9)
得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1008.png?sign=1738890201-KY3f2DrYQeqpz61uOcexkA0rwiWrvHIW-0-0943511230cc7563a1cfea9482e394b7)
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1009.jpg?sign=1738890201-B9mLxnEh0p8dWcyHtpuGw5Icrwa3e9dR-0-0655be10403376ffdeac3a00764c4dbe)
图3-2-16 飞机横滚系统单位阶跃响应曲线(,MATLAB)
③当,有
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1010.png?sign=1738890201-n3qWMbgxjqS759ULeafEVidPBolsOEPG-0-13a7a81bb6953f9c4d9861ffb4b731d4)
得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1011.png?sign=1738890201-zJLwFvrWaeZxtCFjUTgeH8hLqf9I3hoN-0-a802a0ccae3204c87e86fb6ec49b74fe)
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1012.jpg?sign=1738890201-XkfcXunPZlMCPhEM30YcVHTLrF79H4si-0-a8b4254eb3807439654920b852e8b2fa)
图3-2-17 飞机横滚系统单位阶跃响应曲线(,MATLAB)
(4)应用MATLAB软件包,画出各阶跃响应曲线,如图3-2-15~3-2-17所示。
3-27 打磨机器人能够按照预先设定的路径(输入指令)对加工后的工件进行打磨抛光。在实践中,机器人自身的偏差、机械加工误差以及工具的磨损等,都会导致打磨加工误差。若利用力反馈修正机器人的运动路径,可以消除这些误差,提高抛光精度。但是,这又可能使接触稳定性问题变得难以解决。例如,在引入腕力传感器构成力反馈的同时,就带来了新的稳定性问题。
打磨机器人的结构图如图3-2-18所示。若可调增益及
均大于零,试确定能保证系统稳定性的
和
的取值范围。
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1013.jpg?sign=1738890201-kS0uKWm3LczgHUiz171sOJufaotpT7pf-0-d101900da033dbdcbc63789c12d0e110)
图3-2-18 打磨机器人
解:令,则闭环特征方程为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1015.png?sign=1738890201-LWNMGPTtNiHuvsRGVfmsWnh5Z8B8N97D-0-dc45a24d1df4cd91a022f713d626e1eb)
即
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1016.png?sign=1738890201-DfjvxMNpIuEQcYcxLUFgdWNTJ1eIwQlx-0-ba839fd28c816aa69e5b351d0f28cc04)
列出劳斯表如图
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1017.jpg?sign=1738890201-XVBMaAFq8o0nYGMtC5kAqs2mxarMUejk-0-c8c3635cb58cdbbcc58918956c79a5a5)
由劳斯稳定判据知,使系统稳定的和
取值范围为:
。
3-28 一种新型电动轮椅装有一种非常实用的速度控制系统,使颈部以下有残障的人士也能自行驾驶这种电动轮椅。该系统在头盔上以90°间隔安装了四个速度传感器,用来指示前、后、左、右四个方向。头盔传感系统的综合输出与头部运动的幅度成正比。图3-2-19给出了该控制系统的结构图,其中时间常数,
,
。要求:
(1)确定使系统稳定的的取值(
);
(2)确定增益的取值,使系统单位阶跃响应的调节时间等于4s(Δ=2%),并计算此时系统的特征根。
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1023.jpg?sign=1738890201-sgwu61WCVxYITiHaJSr05XG6CRy145Wp-0-fbb54de713c9d22f3bd9831b1542fa0a)
图3-2-19 轮椅控制系统
解:(1)由系统结构图可得,系统开环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1024.png?sign=1738890201-5k8BlZSu4l993HQoipCSZlPJUCXeoNMI-0-8881dc2a85addb412abc4be7078f686f)
闭环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1025.png?sign=1738890201-5GvwrvhwsgbnUJmVMA0RqA1CP1xBF5KG-0-31be6e207e6521f07ef5d5a0cc4d29ab)
闭环特征方程为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1026.png?sign=1738890201-usVtRgYLSCvbUZAzwYoWwDboHoWHCRef-0-bd7553b11559ade23a4928f87ad63fb6)
列出劳斯表
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1027.jpg?sign=1738890201-LjWEHCYRnvQczA03AEYkucrR5VPFTCcP-0-78c14ae1d9a3852b4e318b89d8513302)
由劳斯判据知,使闭环系统稳定的K范围为:-1<K<11.25。
(2)由,可得
,故希望特征方程为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1030.png?sign=1738890201-54J7RkdIgDq89LLHT6QXKBSxgMBjo3mB-0-44622bd5ec35a66d167cfa989c6626a5)
而实际特征方程为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1031.png?sign=1738890201-kri47ZUTWqWUwd9mifkX3W1q2jG0xOba-0-d2f7944f2767ce8e9415976d87f48d01)
比较两式可得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1032.png?sign=1738890201-jsYPSjJ8tNFHFzrPfOa6hjJpiqmMaX8F-0-5424e33e1753d1da1df05c89d12566af)
则闭环特征方程为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1033.png?sign=1738890201-pWbKueQDZxErCObejRoCRc4WJC9b5Eor-0-d2f8e9aeafdd5d7d237581ccd0d750a4)
系统的特征根为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1034.png?sign=1738890201-NG0Eh7OCq7AYngnNi3n9qb86JyvWkYI1-0-8a4ac4ae71c384540c776003901893ad)
3-29 设垂直起飞飞机如图3-2-20(a)所示,起飞时飞机的四个发动机将同时工作。垂直起飞时飞机的高度控制系统如图3-2-20(b)所示。要求:
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1035.jpg?sign=1738890201-yyeywrUx4koTPwN1SeKVr1jXWxgsyfZC-0-c5ddb7625416eabfa680bb7970fca078)
(a)垂直起飞飞机
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1036.jpg?sign=1738890201-HUzzGt7m4RbFsnWgYEyPbiOCQ84VF3VT-0-8abb66d554b5f71eec95cc52907d20dd)
(b)控制系统结构图
图3-2-20 垂直起飞高度控制系统
(1)当时,判断系统是否稳定;
(2)确定使系统稳定的的取值范围。
解:由系统结构图可得,系统开环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1038.png?sign=1738890201-8hbraXeOMqYZCTzFG3Fidp8veM9h5sVW-0-af57b76ed3d71caaa19ad67d1d502a20)
闭环特征方程为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1039.png?sign=1738890201-gYg52W7OtbPbH0wsJn2YFyan9CadnFqO-0-7dd3eefc95a2e0a1fc185ef29a982c62)
列劳斯表如下
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1040.jpg?sign=1738890201-AfRL9CESwsKosNZldNpshCubShQaWxGF-0-458a6026a4241ecd7198367f6d078fde)
由劳斯稳定判据,系统稳定的充要条件为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1041.png?sign=1738890201-B2zvF8D15vjhk0PCf9qCnZ4FRpyeVOsy-0-b64eba0c397b7e6802494b88257fd73d)
解得:。
由上可知使系统稳定的值范围为:
。
当取时,闭环系统是不稳定的。
3-30 火星自主漫游车的导向控制系统如图3-2-21所示。该系统在漫游车的前后部都装有一个导向轮,其反馈通道传递函数为。要求:
(1)确定使系统稳定的值范围;
(2)当为该系统的一个闭环特征根时,试计算
的取值,并计算另外两个闭环特征根;
(3)应用上一步求出值,确定系统的单位阶跃响应。
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1047.jpg?sign=1738890201-7dEwBBnOIa63tIv1WKhprKOI0QylJ4PH-0-ec1ec6affd489d4dc7a9d5ec410a2c95)
图3-2-21 火星漫游车导向控制系统
解:(1)系统闭环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1048.png?sign=1738890201-IcXmNaEVfBlK74bUOj3bNEKvcq3E2c8s-0-0aee2f888775036b2a5035960c7d9891)
闭环特征方程为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1049.png?sign=1738890201-yt8XlgrZGt5EfD1X42eVx80w90fO31XG-0-79d9ea7f3efa9bada0c361f85b8c4153)
列劳斯表如图
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1050.jpg?sign=1738890201-jTr0HmEuNvrfScwCMtid4r6uvfEkl7dz-0-a29be478aea8c8552b61369c71c8553f)
由劳斯判据可知,使系统稳定的值范围
。
(2)设希望特征方程为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1052.png?sign=1738890201-VWtr2AJ5JkQtIsBeZhdAomLS9LTtOz8V-0-416d019b2758a49feaaa60adb163b882)
将上式与实际闭环特征方程相比,有
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1053.png?sign=1738890201-O3LAzQUGRR2FCE0MlUr05IdyukhGryr8-0-62b0b4dc08ee26ae16dfeef4490a02eb)
令,求得另外两个闭环特征根为
,
。
(3)当取时,闭环极点全部为负实极点,没有闭环有限零点,因此系统的单位阶跃响应必然为非周期形态。
因为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1058.png?sign=1738890201-vGOdQdiNzJfqajBQCUAJg9SLmXgIhqrV-0-db6b700dd9442d0fb20a4769ead3bfc3)
所以
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1059.png?sign=1738890201-gV984qEEN6GUZ2tm7WOmaUOK67piAhEd-0-0c4fefae4c74ebe161689732431a26b1)
对上式进行因式分解,可得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1060.png?sign=1738890201-9oQ4ZoASyp6x6Fh8WDdOaULI1QCWsPPM-0-65acaadc8d6954e65440a10527f6c8cd)
对上式取拉氏反变换,有单位阶跃响应
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1061.png?sign=1738890201-1lGDYZ7RaM35kijcZYAndysiFBOHKhbs-0-f4c22d2963b3666ecf25a39c8b384bab)
3-31 一种采用电磁力驱动的磁悬浮列车的构造如图3-2-22(a)所示,其运行速度可达480km/h,载客量为400人。但是,磁悬浮列车的正常运行需要在车体与轨道之间保持0.635cm的气隙,这是一个困难的问题。间隙控制系统结构图如图3-2-22(b)所示。若控制器取为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1062.png?sign=1738890201-vsPhu5bljHoq8ndyvyC4NumEvC9JcHf6-0-419a2666050415c7e6270c3d0871c2ab)
其中为控制器增益。要求:
(1)确定使系统稳定的值范围;
(2)讨论可否确定的合适取值,使系统对单位阶跃输入的稳态跟踪误差为零;
(3)取控制器增益,确定系统的单位阶跃响应。
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1064.jpg?sign=1738890201-pGjTwxisMzFC92W2nXygp03OCexNybYR-0-e42a1493efddc789fce2128a00eebc6a)
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1065.jpg?sign=1738890201-KcZJk4oXqen80bNUTQkf3mGWdjP42uQW-0-33d39cb81401d7346c30c2bda2a62385)
图3-2-22 磁悬浮列车控制系统
解:(1)系统开环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1066.png?sign=1738890201-KTgrZ2aRYXSVT2u2L4kscZWP819rZghY-0-da831269cdecb04c079c3dc7acbd24f7)
系统是0型系统,静态位置系数
闭环系统特征方程
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1068.png?sign=1738890201-Tuljv5JEQef9Mmie1PFUggnHdT5ZCwrs-0-5400a930ef74ff2b99d4f8479ef832c1)
使系统稳定的值范围为:
。
(2)计算稳态误差:
当时,
。
(3)确定系统单位阶跃响应。
令闭环特征多项式
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1073.png?sign=1738890201-efo4fSeOfMfB0NsgVg7uwWUU1c51M8Nl-0-deb8d7666766f3c198bc7bf27214812a)
可得
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1074.png?sign=1738890201-BLRGnC2ledDoZgpxpuFW9cNgsituuvun-0-384493ab862f28d0fd0057832eb39552)
在不同的值下,有表3-2-2所示结果。系统始终为过阻尼二阶系统。
表3-2-2
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1076.png?sign=1738890201-m0ATX1t096B0jXMPV6qZpcZ3CwOwEcoD-0-1addbd70614a91860283e984e36de357)
当取时,闭环传递函数为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1078.png?sign=1738890201-DuuqcMmZAhK5i5TfawiD0IYwkN241PP9-0-6c46cfa041a26a7e59b4cdb3441e929f)
系统在单位阶跃作用下的输出
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1079.png?sign=1738890201-aLjgPwhRWNwwQRKam2lfwq3BSAYJb5kw-0-aad3c188222c7cda748034eb32038905)
故系统的单位阶跃响应为
![](https://epubservercos.yuewen.com/E4B194/15436650205531506/epubprivate/OEBPS/Images/image1080.png?sign=1738890201-46T6XQsw3xm3gcZfByZhFkOZBoF9dSNG-0-b3d39e5bdb0c22b59eefd4d000c1c30d)