参考文献
[1] Dieke GH, Crosswhite HM. The spectra of the doubly and triply ionized rare earths. Appl Optics, 1963, 2: 675-686.
[2] Dieke GH. Spectra and energy levels of rare earth ions in crystals. New York: Wiley-InterScience, 1968.
[3] Carnall WT, Goodman GL, Rajnak K. A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3. J Chem Phys, 1989, 90: 3443-3457.
[4] 李梅, 等. 稀土元素及其分析化学. 北京: 化学工业出版社, 2009.
[5] 苏锵. 稀土化学. 郑州: 河南科学技术出版社, 1993.
[6] 张洪杰, 等. 稀土有机-无机杂化发光材料. 北京: 科学出版社, 2014.
[7] Henrie DE, Fellows RL, Choppin GR. Hypersensitivity in the electronic transitions of lanthanide and actinide complexes. Coord Chem Rev, 1976, 18: 199-224.
[8] Ofelt GS. Intensities of crystal spectra of rare-earth ions. J Chem Phys, 1962, 37: 511-519.
[9] Judd BR. Optical absorption intensities of rare-earth ions. Phys Rev, 1962, 127: 750-761.
[10] 洪广言. 稀土发光材料——基础与应用. 北京: 科学出版社, 2011.
[11] Sanchez C, Ribot F. Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry. New J Chem, 1994, 18: 1007-1047.
[12] Matthews L, Knobbe E T. Luminescence behavior of europium complexes in sol-gel derived host materials. Chem Mater, 1993, 5: 1697-1700.
[13] Schmidt H. New type of non-crystalline solids between inorganic and organic materials. J Non-Cryst Solids, 1985, 73: 681-691.
[14] Wilkes G L, Orler B, Huang H H. “Ceramers”hybrid materials incorporating polymeric/oligomeric species into inorganic glasses utilizing a sol-gel approach. Polym Prepr, 1985, 26. 300-302.
[15] Jin T, Tsutsumi S, Deguchi Y, Machida K, Adachi G Y. Preparation and luminescence characteristics of the europium and terbium complexes incorporated into a silica matrix using a sol-gel method. J Alloys Compd, 1997, 252: 59-66.
[16] Carlos L D, Sá Ferreira R, Rainho J V, Bermudez de Zea. Fine-tuning of the chromaticity of the emission color of organic-inorganic hybrids Co-doped with EuⅢ, TbⅢ, and TmⅢ. Adv Funct Mater, 2002, 12: 819-823.
[17] Serra O A, Nassar E J, Zapparolli G, Rosa I L. Organic complexes of Eu3+ supported in functionalized silica gel: highly luminescent material. J Alloys Compd, 1994, 207: 454-456.
[18] Qian G, Wang M. Preparation and fluorescence properties of nanocomposites of amorphous silica glasses doped with lanthanide(Ⅲ) benzoates. J Phys Chem Solids, 1997, 58: 375-378.
[19] Fu L, Zhang H, Wang S, Meng Q, Yang K, Ni J. In-situ synthesis of terbium complex with salicylic acid in silica matrix by a two-step sol-gel process. Chin Chem Lett, 1998, 9: 1129-1132.
[20] Franville AC, Zambon D, Mahiou R, Troin Y. Luminescence behavior of sol-gel-derived hybrid materials resulting from covalent grafting of a chromophore unit to different organically modified alkoxysilanes. Chem Mater, 2000, 12: 428-435.
[21] Dong D, Jiang S, Men Y, Ji X, Jiang B. Nanostructured hybrid organic-inorganic lanthanide complex films produced in situ via a sol-gel approach. Adv Mater, 2000, 12: 646-649.
[22] Li H, Lin J, Zhang H, Fu L, Meng Q, Wang S. Preparation and luminescence properties of hybrid materials containing europium (Ⅲ) complexes covalently bonded to a silica matrix. Chem Mater, 2002, 14: 3651-3655.
[23] Li H, Lin N, Wang Y, Feng Y, Gan Q, Zhang H, Dong Q, Chen Y. Construction and photoluminescence of monophase hybrid materials derived from a urea-based bis-silylated bipyridine. Eur J Inorg Chem, 2009, 519-523.
[24] Liu P, Li H, Wang Y, Liu B, Zhang W, Wang Y, Yan W, Zhang H, Schubert U. Europium complexes immobilization on titaniavia chemical modification of titanium alkoxide. J Mater Chem, 2008, 18: 735-737.
[25] Li H, Liu P, Wang Y, Zhang L, Yu J, Zhang H, Liu B, Schubert U. Preparation and luminescence properties of hybrid titania immobilized with lanthanide complexes. J Phys Chem C, 2009, 113: 3945-3949.
[26] Wang H, Wang Y, Zhang L, Li H. Transparent and luminescent ionogels based on lanthanide-containing ionic liquids and poly (methyl methacrylate) prepared through an environmentally friendly method. RSC Adv, 2013, 3: 8535-8540.
[27] Lunstroot K, Driesen K, Nockemann P, Görller-Walrand C, Binnemans K, Bellayer S, Le Bideau J, Vioux A. Luminescent ionogels based on europium-doped ionic liquids confined within silica-derived networks. Chem Mater, 2006, 18: 5711-5715.
[28] Feng J, Yu J B, Song S Y, Sun L N, Fan W Q, Guo X M, Dang S, Zhang H J. Near-infrared luminescent xerogel materials covalently bonded with ternary lanthanide [Er(Ⅲ), Nd(Ⅲ), Yb(Ⅲ), Sm(Ⅲ)]complexes. Dalton Trans, 2009: 2406.
[29] Carlos L D, Ferreira R A, de Zea Bermudez V, Julian-Lopez B, Escribano P. Progress on lanthanide-based organic-inorganic hybrid phosphors. Chem Soc Rev, 2011, 40: 536-549.
[30] Eliseeva S V, Bünzli J C G. Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev, 2010, 39: 189-227.
[31] Feng J, Zhang H. Hybrid materials based on lanthanide organic complexes: a review. Chem Soc Rev, 2013, 42: 387-410.
[32] Binnemans K. Lanthanide-based luminescent hybrid materials. Chem Rev, 2009, 109: 4283-4374.
[33] Jaramillo E, Auerbach S M. New force field for Na cations in faujasite-type zeolites. The J Phys Chem B, 1999, 103: 9589-9594.
[34] Calzaferri G, Huber S, Maas H, Minkowski C. Host-guest antenna materials. Angew Chem Int Ed, 2003, 42: 3732-3758.
[35] Calzaferri G, Lutkouskaya K. Mimicking the antenna system of green plants. Photochem Photobiol Sci, 2008, 7: 879-910.
[36] Sendor D, Kynast U. Efficient red-emitting hybrid materials based on zeolites. Adv Mater, 2002, 14: 1570-1574.
[37] Li H, Ding Y, Wang Y. Photoluminescence properties of Eu3+-exchanged zeolite L crystals annealed at 700℃. Cryst Eng Comm, 2012, 14: 4767-4771.
[38] Mech A, Monguzzi A, Cucinotta F, Meinardi F, Mezyk J, De Cola L, Tubino R. White light excitation of the near infrared Er3+ emission in exchanged zeolite sensitised by oxygen vacancies. Phys Chem Chem Phys, 2011, 13: 5605-5609.
[39] Jüstel T, Wiechert D, Lau C, Sendor D, Kynast U. Optically functional zeolites: evaluation of UV and VUV stimulated photoluminescence properties of Ce3+-and Tb3+-doped zeolite X. Adv Funct Mater, 2001, 11: 105-110.
[40] Zhang H, Li H. Efficient visible and near-infrared photoluminescence from lanthanide and bismuth functionalized zeolite L. J Mater Chem, 2011, 21: 13576-13580.
[41] Wada Y, Sato M, Tsukahara Y. Fine control of red-green-blue photoluminescence in zeolites incorporated with rare-earth ions and a photosensitizer. Angew Chem Int Ed, 2006, 45: 1925-1928.
[42] Ding Y, Wang Y, Li Y, Cao P, Ren T. The sensitized emission of Eu3+ and Tb3+ by 4-fluorobenzophenone confined in zeolite L microcrystals. Photochem Photobiol Sci, 2011, 10: 543-547.
[43] Ding Y, Wang Y, Li H, Duan Z, Zhang H, Zheng Y. Photostable and efficient red-emitters based on zeolite L crystals. J Mater Chem, 2011, 21: 14755-14759.
[44] Comby S, Bünzli JC G. Lanthanide near-infrared luminescence in molecular probes and devices. Elsevier, 2007.
[45] Monguzzi A, Macchi G, Meinardi F, Tubino R, Burger M, Calzaferri G. Sensitized near infrared emission from lanthanide-exchanged zeolites. Appl Phys Lett, 2008, 92 (12).
[46] Mech A, Monguzzi A, Meinardi F, Mezyk J, Macchi G, Tubino R. Sensitized NIR erbium (Ⅲ) emission in confined geometries: a new strategy for light emitters in telecom applications. J Am Chem Soc, 2010, 132: 4574-4576.
[47] Wang Y, Yue Y, Li H, Zhao Q, Fang, Y, Cao P. Dye-loaded zeolite L@ silica core-shell composite functionalized with europium (Ⅲ) complexes for dipicolinic acid detection. Photochem Photobiol Sci, 2011, 10: 128-132.
[48] Maas H, Calzaferri G. Abfangen und einspeisen von energie in farbstoff-zeolith-nanoantennen. Angew Chem, 2002, 114: 2389-2392.
[49] Li P, Wang Y, Li H, Calzaferri G. Luminescence enhancement after adding stoppers to europium(Ⅲ) nanozeolite L. Angew Chem Int Ed, 2014, 53: 2904 -2909.
[50] Wang Y, Li H, Feng Y, Zhang H, Calzaferri G, Ren T. Orienting zeolite L microcrystals with a functional linker. Angew Chem Int Ed, 2010, 49: 1434-1438.
[51] Cao P, Wang Y, Li H, Yu X. Transparent, luminescent, and highly organized monolayers of zeolite L. J Mater Chem, 2011, 21: 2709-2714.
[52] Cao P, Li H, Zhang P, Calzaferri G. Self-assembling zeolite crystals into uniformly oriented layers. Langmuir, 2011, 27: 12614-12620.
[53] Davis M E. Ordered porous materials for emerging applications. Nature , 2002, 417:813-821.
[54] De Vos D E, Dams M, Sels B F, Jacobs P A. Ordered mesoporous and microporous molecular sieves functionalized with transition metal complexes as catalysts for selective organic transformations. Chem Rev, 2002, 102: 3615-3640.
[55] Scott B J, Wirnsberger G, Stucky G D. Mesoporous and mesostructured materials for optical applications. Chem Mater. 2001, 13: 3140-3150.
[56] Dai S, Burleigh M C, Shin Y, Morrow C C, Barnes C E, Xue Z. Imprint coating: a novel synthesis of selective functionalized ordered mesoporous sorbents. Angew Chem Int Ed, 1999, 38: 1235-1239.
[57] Lang N, Tuel A. A fast and efficient ion-exchange procedure to remove surfactant molecules from MCM-41 materials. Chem Mater, 2004, 16: 1961-1966.
[58] Guo X, Fu L, Zhang H, Carlos L, Peng C, Guo J, Yu J, Deng R, Sun L. Incorporation of luminescent lanthanide complex inside the channels of organically modified mesoporous silica via template-ion exchange method. New J Chem, 2005, 29: 1351-1358.
[59] Li S, Song H, Li W, Ren X, Lu S, Pan G, Fan L, Yu H, Zhang H, Qin R. Improved photoluminescence properties of ternary terbium complexes in mesoporous molecule sieves. The J Phys Chem B, 2006, 110: 23164-23169.
[60] Torelli S, Imbert D, Cantuel M, Bernardinelli G, Delahaye S, Hauser A, Bünzli J C G, Piguet C. Tuning the decay time of lanthanide-based near infrared luminescence from micro-to milliseconds through d→f energy transfer in discrete heterobimetallic complexes. Chem Eur J, 2005, 11: 3228-3242.
[61] Sun LN, Zhang HJ, Yu JB, Yu SY, Peng CY, Dang S, Guo XM, Feng J. Near-infrared emission from novel tris (8-hydroxyquinolinate) lanthanide (Ⅲ) complexes-functionalized mesoporous SBA-15. Langmuir, 2008, 24: 5500-5507.
[62] Sun LN, Zhang Y, Yu JB, Yu SY, Dang S, Peng CY, Zhang HJ. Design and synthesis of near-IR luminescent mesoporous materials covalently linked with tris (8-hydroxyquinolinate) lanthanide (Ⅲ) complexes. Microporous Mesoporous Mater, 2008, 115: 535-540.
[63] Franville A, Zambon D, Mahiou R, Chou S, Troin Y, Cousseins J. Synthesis and optical features of an europium organic-inorganic silicate hybrid. J Alloys Compd, 1998, 275: 831-834.
[64] Franville AC, Zambon D, Mahiou R, Troin Y. Luminescence behavior of sol-gel-derived hybrid materials resulting from covalent grafting of a chromophore unit to different organically modified alkoxysilanes. Chem Mater, 2000, 12: 428-435.
[65] Franville AC, Mahiou R, Zambon D, Cousseins JC. Molecular design of luminescent organic-inorganic hybrid materials activated by europium (Ⅲ) ions. Solid State Sci, 2001, 3: 211-222.
[66] Li Y, Yan B. Photoactive europium (Ⅲ) centered mesoporous hybrids with 2-thenoyltrifluoroacetone functionalized SBA-16 and organic polymers. Dalton Trans, 2010, 39: 2554-2562.
[67] Li YJ, Yan B, Li Y. Lanthanide (Eu3+, Tb3+) centered mesoporous hybrids with 1,3-diphenyl-1,3-propanepione covalently linking SBA-15 (SBA-16) and poly (methylacrylic acid). Chem Asian J, 2010, 5: 1642-1651.
[68] Embert F, Mehdi A, Reyé C, Corriu RJ. Synthesis and luminescence properties of monophasic organic-inorganic hybrid materials incorporating Europium (Ⅲ). Chem Mater, 2001, 13: 4542-4549.
[69] Peng C, Zhang H, Yu J, Meng Q, Fu L, Li H, Sun L, Guo X. Synthesis, characterization, and luminescence properties of the ternary europium complex covalently bonded to mesoporous SBA-15. J Phys Chem B, 2005, 109: 15278-15287.
[70] Guo X, Guo H, Fu L, Zhang H, Deng R, Sun L, Feng J, Dang S. Novel hybrid periodic mesoporous organosilica material grafting with Tb complex: synthesis, characterization and photoluminescence property. Microporous Mesoporous Mater, 2009, 119: 252-258.
[71] Moreau J J, Pichon B P, Wong Chi Man M, Bied C, Pritzkow H, Bantignies J L, Dieudonné P, Sauvajol J L. A better understanding of the self-structuration of bridged silsesquioxanes. Angew Chem Int Ed, 2004, 43: 203-206.
[72] Li J, Qi T, Wang L, Zhou Y, Liu C, Zhang Y. Synthesis and characterization of rod-like periodic mesoporous organosilica with the 1, 4-diureylenebenzene moieties. Microporous Mesoporous Mater, 2007, 103: 184-189.
[73] Wolff NE, Pressley R. Optical maser action in an Eu3+containing organic matrix. J Appl Phys Lett, 1963, 2: 152-154.
[74] Ueba Y, Banks E, Okamoto Y. Investigation on the synthesis and characterization of rare earth metal-containing polymers. Ⅱ. Fluorescence properties of Eu3+-polymer complexes containing β-diketone ligand. J Appl Polym Sci, 1980, 25: 2007-2017.
[75] Banks E, Okamoto Y, Ueba Y. Synthesis and characterization of rare earth metal-containing polymers. I. Fluorescent properties of ionomers containing Dy3+, Er3+, Eu3+, and Sm3+. J Appl Polym Sci, 1980, 25: 359-368.
[76] O Moudam, Rowan B C, Alamiry M, Richardson P, Richards B S, A Jones C, Robertson N. Europium complexes with high total photoluminescence quantum yields in solution and in PMMA. Chem Commun, 2009: 6649.
[77] Singh A K, Singh S K, Mishra H, Prakash R, Rai S B. Structural, thermal, and fluorescence properties of Eu(DBM)3Phenx complex doped in PMMA. J Phys Chem B, 2010, 114: 13042-13051.
[78] Suárez1S, Devaux A, Bañuelos J, Bossart O, Kunzmann A, Calzaferri G. Cover picture: transparent zeolite-polymer hybrid materials with adaptable properties. Adv Funct Mater, 2007, 17: 2298-2306.
[79] Wang H, Wang Y, Zhang L, Li H. Transparent and luminescent ionogels based on lanthanide-containing ionic liquids and poly(methyl methacrylate) prepared through an environmentally friendly method. RSC Adv, 2013, 3: 8535-8540.
[80] Fan W Q, Feng J, Song S Y, Lei Y Q, Zheng G L, Zhang H J. Synthesis and optical properties of europium-complex-doped inorganic/organic hybrid materials built from oxo-hydroxo organotin nano building blocks. Chem Eur J, 2010, 16: 1903-1910.
[81] Fan W Q, Feng J, Song S Y, Lei Y Q, Zhou L, Zheng G L, Dang S, Wang S, Zhang H J. Near-infrared luminescent copolymerized hybrid materials built from tin nanoclusters and PMMA. Nanoscale, 2010, 2: 2096-2103.
[82] Kawa M, Fréchet J M J. Self-assembled lanthanide-cored dendrimer complexes: enhancement of the luminescence properties of lanthanide ions through site-isolation and antenna effects. Chem Mater, 1998, 10: 286-296.
[83] Luo Y H, Yan Q, Zhang Z S, Yu X W, Wu W X, Su W, Zhang Q J. White LED based on poly(N-vinylcarbazole) and lanthanide complexes ternary co-doping system. J Photochem Photobiol A, 2009, 206: 102-108.
[84] Kai J, Felinto M C F C, Nunes L A O, Malta O L, Brito H F. Intermolecular energy transfer and photostability of luminescence-tuneable multicolour PMMA films doped with lanthanide-β-diketonate complexes. J Mater Chem, 2011, 21: 3796-3802.
[85] Guo L, Yan Bg, Liu J-L, Sheng K, Wang X-L. Coordination bonding construction, characterization and photoluminescenceof ternary lanthanide (Eu3+, Tb3+) hybrids with phenylphenacyl-sulfoxidemodified bridge and polymer units. Dalton Trans, 2011, 40: 632-638.
[86] Sheng K, Yan B, Lu H-F, Guo L. Ternary rare earth inorganic-organic hybrids with a mercapto-functionalized Si-O linkage and a polymer chain: coordination bonding assembly and luminescence. Eur J Inorg Chem, 2010: 3498-3505.
[87] 张书第, 张振芳, 文松林. 化学共沉淀法制备纳米四氧化三铁粉体. 辽宁化工, 2011, 40: 325-328.
[88] Yu S Y, Zhang H J, Yu J B, Wang C, Sun L N, Shi W D. Bifunctional magnetic-optical nanocomposites: grafting lanthanide complex onto core-shell magnetic silica nanoarchitecture. Langmuir, 2007, 23: 7836-7840.
[89]Feng J, Zhang H J, Yu J B, Wang C, Sun L N, Shi W D. Novel multifunctional nanocomposites: magnetic mesoporous silica nanospheres covalently bonded with near-infrared luminescent lanthanide complexes. Langmuir, 2010, 26: 3596-3600.
[90] Feng J, Fan W Q, Song S Y, Yu Y N, Deng R P, Zhang H J. Fabrication and characterization of magnetic mesoporous silica nanospheres covalently bonded with europium complex. Dalton Trans, 2010, 39: 5166-5171.
[91] Clearfield A, Stynes J. The preparation of crystalline zirconium phosphate and some observations on its ion exchange behaviour. J Inorg Nucl Chem, 1964, 26: 117-129.
[92] Fu L, Xu Q, Zhang H, Li L, Meng Q, Xu R. Preparation and luminescence properties of the mesoporous MCM-41s intercalated with rare earth complex. Mater Sci Eng B, 2002, 88: 68-72.
[93] Chen H, Zhang W G. A strong-fluorescent Tb-containing hydrotalcite-like compound. J Am Ceram Soc, 2010, 93: 2305-2310.
[94] Sanchez A, Echeverria Y, Torres C S, González G, Benavente E. Intercalation of europium (Ⅲ) species into bentonite. Mater Res Bull, 2006, 41: 1185-1191.
[95] Li H, Li M, Wang Y, Zhang W. Luminescent hybrid materials based on laponite clay. Chem Eur J, 2014, 20: 10392-10396.
[96] Kwon BH, Jang H S, Yoo H S, Kim S W, Kang D S, Maeng S, Jang D S, Kim H, Jeon D Y. White-light emitting surface-functionalized ZnSe quantum dots: europium complex-capped hybrid nanocrystal. J Mater Chem, 2011, 21: 12812-12818.
[97] Li Y J, Yan B. Photophysical properties of a novel organic-inorganic hybrid material: Eu (Ⅲ)-β-diketone complex covalently bonded to SiO2/ZnO composite matrix. Photochem Photobiol, 2010, 86: 1008-1015.
[98] Gago S, Pillinger M, Sá Ferreira R A, Carlos L D, Santos T M, Gonçalves I. Immobilization of lanthanide ions in a pillared layered double hydroxide. Chem Mater, 2005, 17: 5803-5809.
[99] de Faria E H, Nassar E J, Ciuffi K J, Vicente M A, Trujillano R, Rives V, Calefi P S. New highly luminescent hybrid materials: terbium pyridine- picolinate covalently grafted on kaolinite. ACS Appl Mater Interfaces, 2011, 3: 1311-1318.
[100] Li Y, Yan B. Preparation, characterization and luminescence properties of ternary europium complexes covalently bonded to titania and mesoporous SBA-15. J Mater Chem, 2011, 21: 8129-8136.
[101] Lezhnina M, Kynast U. Optical properties of matrix confined species. Opt Mater, 2010, 33: 4-13.
[102] 耿利娜, 相明辉, 李娜, 李克安. 层状无机化合物——磷酸锆的研究和应用进展. 化学进展, 2004, 16 : 717-727.
[103] 徐君, 刘伟生, 唐瑜. 稀土配合物杂化发光材料的组装及光物理性质研究进展. 中国科学: 化学, 2013, 10: 006.
[104] Clearfield A. Role of ion exchange in solid-state chemistry. Chem Rev, 1988, 88: 125-148.
[105] Kim R M, Pillion J E, Burwell D A, Groves J T, Thompson M E. Intercalation of aminophenyl-and pyridinium-substituted porphyrins into zirconium hydrogen phosphate: evidence for substituent-derived orientational selectivity. Inorg Chem, 1993, 32: 4509-4516.
[106] Šimek P, Sofer Z, Jankovský O, et al. Oxygen-free highly conductive graphene papers. Advanced Functional Materials, 2014, 24: 4878-4885.
[107] Chen H, Müller MB, Gilmore KJ, Wallace, et al. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater, 2008, 20: 3557-3561.
[108] Han S, Hu L, Liang Z, et al. One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe2O3/graphene composites with enhanced photocatalytic activity. Advanced Functional Materials, 2014, 24: 5719-5727.
[109] Sun J, Zhang H, Guo LH, et al. Two-dimensional interface engineering of a titania-graphene nanosheet composite for improved photocatalytic activity. ACS Applied Materials & Interfaces, 2013, 5: 13035-13041.
[110] Zhao C, Feng L, Xu B, et al. Synthesis and characterization of red‐luminescent graphene oxide functionalized with silica-coated Eu3+ complex nanoparticles. Chemistry—A European Journal, 2011, 17: 7007-7012.
[111] Chandrasekar A, Pradeep T. Luminescent silver clusters with covalent functionalization of graphene. The Journal of Physical Chemistry C, 2012, 116: 14057-14061.
[112] Cao Y, Yang T, Feng J, et al. Decoration of graphene oxide sheets with luminescent rare-earth complexes. Carbon, 2011, 49: 1502-1504.
[113] Loh KP, Bao Q, Eda G, et al. Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2010, 2: 1015-1024.
[114] Zhang W, Zou X, Zhao J. Preparation and performance of a novel graphene oxide sheets modified rare-earth luminescence material. Journal of Materials Chemistry C, 2015, 3: 1294-1300.
[115] Lezhnina M, Benavente E, Bentlage M, Echevarria Y, Klumpp E, Kynast U. Luminescent hybrid material based on a clay mineral. Chem Mater, 2007, 19: 1098-1102.
[116] Yang D, Wang Y, Wang Y, Li Z, Li H. Luminescence enhancement after adding organic salts to nanohybrid under aqueous condition. ACS Appl Mater Interfaces, 2015, 7: 2097-2103.
[117] Holbrey J, Seddon K. Ionic liquids. Clean Products and Processes, 1999, 1: 223-236.
[118] Visser A E, Swatloski R P, Reichert W M, Mayton R, Sheff S, Wierzbicki A, Davis Jr J H, Rogers R D. Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem Commun, 2001, 135-136.
[119] Cole A C, Jensen J L, Ntai I, Tran K L T, Weaver K J, Forbes D C, Davis J H. Novel Brønsted acidic ionic liquids and their use as dual solvent-catalysts. J Am Chem Soc, 2002, 124: 5962-5963.
[120] Mehnert C P, Cook R A, Dispenziere N C, Afeworki M. Supported ionic liquid catalysis-a new concept for homogeneous hydroformylation catalysis. J Am Chem Soc, 2002, 124: 12932-12933.
[121] Nockemann P, Beurer E, Driesen K, Van Deun R, Van Hecke K, Van Meervelt L, Binnemans K. Photostability of a highly luminescent europium β-diketonate complex in imidazolium ionic liquids. Chem Commun, 2005, 34: 4354-4356.
[122] Nockemann P, Thijs B, Postelmans N, Van Hecke K, Van Meervelt L, Binnemans K. Anionic rare-earth thiocyanate complexes as building blocks for low-melting metal-containing ionic liquids. J Am Chem Soc, 2006, 128: 13658-13659.
[123] Mallick B, Balke B, Felser C, Mudring A V. Dysprosium room-temperature ionic liquids with strong luminescence and response to magnetic fields. Angew Chem, Int Ed, 2008, 47: 7635-7638.
[124] Wang D, Wang H, Li H. Novel luminescent soft materials of terpyridine-containing ionic liquids and europium(Ⅲ). ACS Appl Mater Interfaces, 2013, 5: 6268-6275.