慢性咳嗽
上QQ阅读APP看书,第一时间看更新

第六节 咳嗽高敏感性的发生机制

一、概述

咳嗽敏感性(cough reflex sensitivity)是指机体在接受外界刺激(包括化学、机械和温热)时,表现出来的咳嗽难易程度。目前临床应用最广泛的是化学物质激发的咳嗽敏感性检测,常见的激发物包括辣椒素和柠檬酸,均以定量的方式吸入。咳嗽高敏感性是咳嗽高敏综合征(cough hypersensitivity syndrome,CHS)定义中最主要的特征,然而目前咳嗽高敏感性的发生机制尚未完全明确,气道炎症、瞬时受体电位(transient receptor potential,TRP)通路激活、咳嗽中枢易化、P2X3受体激活和氧化应激被认为参与了咳嗽高敏感性的发生发展过程。

二、气道炎症

Birring等发现慢性特发性咳嗽患者中伴有器官特异性自身免疫性疾病的比例(59%)明显高于对照组(12%),且慢性特发性咳嗽患者支气管肺泡灌洗液(BALF)中淋巴细胞的比例(10%)显著高于正常对照组(6.3%)及咳嗽病因明确组(5.2%)。Mund等进一步研究发现,在以干咳为主的慢性原发性咳嗽女性患者中,BALF中CD3+、CD4+淋巴细胞总数显著高于健康对照组。然而这种特发性气道炎症提高咳嗽敏感性的机制尚有待进一步研究。Boulet等发现非哮喘性慢性咳嗽患者BALF中的炎症细胞数目显著增加,支气管活检可见支气管上皮脱落及以单核细胞浸润为主的炎症。

近年来认识到气道神经源性炎症在咳嗽高敏感性的发生中起重要作用,参与咳嗽高敏感性发生的神经肽主要包括P物质(SP)、神经激肽A与神经激肽B等,由感觉神经释放,作为神经递质并引起局部炎症反应。这些神经肽可作用于多种效应细胞如炎症细胞、黏液腺的NK1、NK2与NK3等受体,造成血管通透性增高、血浆外渗、组织水肿,在咳嗽敏感性增高及咳嗽发病中起重要作用。吸入臭氧、辣椒素、变应原、高渗盐水、寒冷空气、香烟等各种理化刺激,均可导致神经肽释放,进而刺激RARs和C纤维诱发咳嗽。Cho等发现辣椒素咳嗽敏感性增高的慢性咳嗽患者鼻灌洗液中SP含量明显高于辣椒素咳嗽敏感性正常组,其咳嗽敏感性的增高率与鼻灌洗液中SP的含量呈正相关,且治疗后SP等神经肽与咳嗽敏感性均能显著降低。另外,咳嗽敏感性增高患者气道黏膜的SP蛋白的表达明显增高。

此外,当气道存在非特异性炎症尤其是神经源性炎症时,机体可分泌内源性炎症介质如前列腺素(PG)及血管舒张肽。既往研究证实,PGE2及缓激肽能够敏化咳嗽反射,致使辣椒素咳嗽敏感性增高,其机制与PGE2、缓激肽激活了蛋白激酶C,从而敏化TRPV1通道有关。Grace等进一步证实PGE2及缓激肽作为激发物能引起TRPV1及TRPA1通路诱导的豚鼠咳嗽敏感性增高。

可见,非特异性气道炎症尤其是神经源性炎症与咳嗽高敏感性的发生具有较大关系。

三、瞬时受体电位通路激活

瞬时受体电位(transient receptor potential,TRP)通道蛋白首次从果蝇体内分离获得,由于其对强光反应表现为瞬时性,因此被命名为瞬时受体电位通道。TRP通道由6个跨膜多肽亚单位组成,大部分细胞都有此类通道蛋白的表达,主要感受细胞内外的信号如化学刺激、机械刺激、温度变化及渗透压等。目前发现哺乳动物TRP家族有28个成员,根据氨基酸序列同源性分为6个亚家族,包括TRPC、TRPV、TRPM、TRPA、TRPP及TRPML。有些TRP通道与感官知觉相关,亦有研究发现TRP通道参与了呼吸系统疾病如慢性阻塞性肺疾病、支气管哮喘和肺纤维化等的发病。目前研究表明,与咳嗽高敏感性的发生关系较大的TRP通道为TRPV1和TRPA1。近年来,亦有研究表明TRPV4、TRPM8也可参与咳嗽高敏感性的发生。

(一)瞬时受体电位香草酸亚型1通道

瞬时受体电位香草酸亚型1(transient receptor potential vanilloid 1,TRPV1)为非选择性阳离子通道,是首个被证实能够介导豚鼠咳嗽反射的TRP通道。随后TRPV1被成功克隆,上述观点进一步得到验证。TRPV1的主要激发物包括辣椒素、白三烯B4、热(>43℃)、较低的pH(酸性)及内源性大麻素等,是目前研究最多的咳嗽相关TRP通道。Watanabe等利用免疫组织化学技术定位TRPV1在豚鼠气道中的分布,结果显示其主要分布于气管、支气管及肺泡的神经轴突。Grace等和Hu等分别发现TRPV1在颈静脉神经节(jugular ganglia)的表达多于结状神经节(nodose ganglia)。Groneberg等利用免疫荧光技术检测慢性咳嗽患者及正常人支气管镜活检标本中TRPV1的表达,发现慢性咳嗽患者支气管上皮中TRPV1阳性荧光表达量显著高于健康对照者,且与辣椒素咳嗽敏感性显著相关。TRPV1激动剂如辣椒素、柠檬酸可刺激人类或豚鼠咳嗽,而拮抗剂如辣椒平(capsazepine)可抑制由激动剂激发的咳嗽反射。

(二)瞬时受体电位锚蛋白1通道

与TRPV1类似,另外一个TRP通道瞬时受体电位锚蛋白1((transient receptor potential ankyrin 1,TRPA1)为非选择性钙离子通道。TRPA1首先在人类肺成纤维细胞中分离,广泛分布于感觉神经元细胞。TRPA1的主要激发物包括丙烯醛、肉桂醛、冷空气(<17℃)、机动车尾气、生物燃料烟雾及香烟烟雾等。Andre等利用TRPA1激动剂肉桂醛、异硫氰酸烯丙酯吸入激发豚鼠咳嗽敏感性增高,该效应能被TRPA1选择性拮抗剂HC-030031抑制。Birrell等发现吸入TRPA1激动剂丙烯醛、肉桂醛能够分别在豚鼠和健康人类志愿者中引发咳嗽,而且豚鼠的咳嗽效应能被拮抗剂HC-030031抑制。我们对66例临床难治性慢性咳嗽患者进行辣椒素(TRPV1激动剂)与AITC(TRPA1激动剂)咳嗽激发试验及气道黏膜TRPV1与TRPA1表达水平的检测。研究结果发现,上述慢性咳嗽患者辣椒素咳嗽激发试验与AITC咳嗽激发试验的阳性率分别为57.58%与42.43%。而结合两种检测方法得出的咳嗽高敏感阳性率为74.25%。此外,上述患者气道黏膜存在不同程度TRPV1和/或TRPA1表达水平的增高,且与其辣椒素/AITC咳嗽敏感性存在一定相关性。

(三)瞬时受体电位香草酸亚型4通道

对于瞬时受体电位香草酸亚型4(transient receptor potential vanilloid receptor-4,TRPV4)的认识,最初将其定义为渗透压感受器,其主要激发物为低渗溶液、柠檬酸、双穿心莲内酯和大于25℃的温度。TRPV4广泛分布于呼吸道,也分布于支配气道的迷走神经节,已发现TRPV4分布于结状神经节(nodose ganglia),而颈静脉神经节(jugular ganglia)未见TRPV4分布。Belvisi等用TRPV4选择性激动剂GSK1016790a刺激豚鼠咳嗽,随后采用TRPV4的选择性拮抗剂HC067047可抑制GSK1016790a引起的豚鼠咳嗽。

(四) TRPM8通道

参与咳嗽敏感性的TRP通道还包括TRPM8。作为温度感受器,当温度<15℃或接触凉味剂如薄荷醇和icilin时,TRPM8可被激活,从而降低咳嗽敏感性。Millqvist等开展了一项吸入薄荷醇的随机双盲实验,共纳入对环境刺激敏感的慢性咳嗽患者14例,结果显示吸入薄荷醇组患者辣椒素咳嗽敏感性显著低于吸入安慰剂组,提示薄荷醇能通过TRP通道降低咳嗽敏感性。Plevkova等报道豚鼠经口给予薄荷醇(100mg/kg)后能显著抑制柠檬酸激发的咳嗽敏感性,该效应与豚鼠鼻部三叉神经的TRPM8表达升高相关。

四、咳嗽中枢易化

目前观点认为,延髓孤束核(nucleus tractus solitarius)参与了咳嗽中枢反射的调节。Lindsey等和Shannon等的研究发现外界刺激信号经迷走神经传入,经由靠近或位于孤束核内的不同亚核二级神经元处理、整合并输出。近年来,脑功能磁共振显像技术已用于检测与人类咳嗽控制相关的大脑区域。Mazzone等的研究中将10例正常人以伪随机的方式分别纳入吸入辣椒素组或吸入生理盐水组(对照组),记录各组咳嗽冲动并进行功能性脑显像,结果显示辣椒素能稳定地诱导咳嗽冲动,并与大脑皮层的激活相关,提示皮层神经网络可能参与了人类咳嗽的调控。当机体处于应激状态或者暴露于环境污染物时,孤束核神经元细胞可出现神经可塑性改变。Ando等通过对咳嗽高敏感性的患者进行MRI显像研究,发现这类患者的咳嗽感觉传入信号增大,而抑制咳嗽的行为能力减弱。Joad等使豚鼠暴露于香烟(1mg/m3,6h/d,5d/w)环境,暴露5周后豚鼠柠檬酸咳嗽敏感性显著增高,第6周分别注射P物质拮抗剂SR140333(拮抗神经激肽1受体),结果显示SR140333能显著抑制香烟暴露的豚鼠咳嗽敏感性,提示孤束核通过释放P物质,引起咳嗽敏感性增高。Lv等通过对豚鼠的迷走背核复合体(包括孤束核)微量注射TRPV1激动剂,发现豚鼠产生神经源性炎症并且咳嗽敏感性增高。

五、P2X3受体激活

ATP作为一种神经递质,广泛存在于中枢和外周神经系统。由损伤细胞或炎症组织释放到细胞外的ATP可激活初级传入神经元上的P2X和P2Y受体,进而引起疼痛。P2X受体中的P2X3亚单位高度选择性表达于感觉神经元,包括支配咳嗽反射的迷走传入神经元。近年来有学者提出慢性咳嗽是一种神经性疾病,随后这个概念受到广泛认同。迷走传入神经的高敏感性是慢性咳嗽的一个特征,在患者身上则表现为咳嗽高敏感性,因此与咳嗽相关的感觉受体可作为治疗慢性咳嗽的潜在靶点。Abdulqawi等进行的一项随机、双盲、安慰剂对照临床试验表明,应用P2X3受体拮抗剂可显著减少性咳嗽患者的咳嗽频次,提示P2X3在咳嗽的神经高敏感性发生中起到重要作用。随后,Fowles等发现慢性咳嗽患者吸入ATP后咳嗽敏感性增高,提示位于ATP的下游信号通路的P2X3受体可能在咳嗽高敏感性的发生中起到重要作用。在动物实验方面,Kamei等发现豚鼠吸入ATP后,对柠檬酸的咳嗽反射增强;Bonvini等在研究TRPV4-ATP-P2X3通路时,发现TRPV4受体激活可引起迷走传入感觉神经的敏感性增高,而TRPV4和P2X3受体的拮抗剂皆可抑制该现象。这些研究表明,P2X3受体激活在咳嗽高敏感性的发生中起重要作用。

六、氧化应激

氧化应激是一种异常的氧化还原状态,磷脂、蛋白质和核酸被活性氧(reactive oxygen species,ROS)氧化,引起细胞功能障碍。吸入空气污染物质中氧化的/亲电子的成分如臭氧、丙烯醛和异氰酸盐类后,经一系列反应可使ROS增高而引起氧化应激。内源性气道炎症也可使ROS含量增高,从而引起氧化应激。氧化应激产物如活性氧和中间产物自由基可作为一种有害刺激,激活支配气道的感觉神经末梢,而这些感受伤害的神经末梢激活可触发咳嗽反射。相关研究表明,氧化应激可通过活化TRP通道,从而激活气道的伤害感受器。Andersson等采用过氧化氢诱导大鼠氧化应激,发现迷走传入神经的TRPA1激活,位于结状神经结的神经元钙内流增多。Nesuashvili等发现ROS可使支配气道的迷走传入神经产生动作电位,该现象可被TRPA1的拮抗剂HC-030031显著抑制,而TPRV1的拮抗剂iodoresiniferatoxin也可以在一定程度上抑制该现象。该研究同时运用HEK293细胞进行实验,结果显示,相比TRPV1激活,TRPA1激活与ROS的关系更加密切。这些研究表明,氧化应激可激活TRP通道尤其是TRPA1,活化迷走传入神经细胞。而慢性咳嗽本身是一种神经性疾病,支配气道的迷走传入神经活化与咳嗽高敏感性的发生密切关联。因而,氧化应激与咳嗽高敏感性的发生具有一定关系。

(陈法桂 赖克方)
参考文献

1.赖克方,方章福,姚红梅.咳嗽高敏感综合征:不明原因慢性咳嗽的新概念.解放军医学杂志,2014,39(5):343-349.

2.Birring SS. The search for the hypersensitivity in chronic cough. Eur Respir J,2017,49(2):1700082.

3.Chung KF. Chronic ‘cough hypersensitivity syndrome’:a more precise label for chronic cough. Pulm Pharmacol Ther,2011,24(3):267-271.

4.Montell C,Rubin GM. Molecular characterization of the Drosophila trp locus:a putative integral membrane protein required for phototransduction. Neuron,1989,2(4):1313-1323.

5.Clapham DE. TRP channels as cellular sensors. Nature,2003,426(6966):517-524.

6.Karashima Y,Hoka S. TRP channels as novel cellular sensors. Fukuoka Igaku Zasshi,2011,102(3):48-55.

7.Caterina MJ,Schumacher MA,Tominaga M,et al. The capsaicin receptor:a heat-activated ion channel in the pain pathway. Nature,1997,389(6653):816-824.

8.Arniges M,Vázquez E,Fernández-Fernández JM,et al. Swelling-activated Ca2+ entry via TRPV4 channel is defective in cystic fibrosis airway epithelia. J Biol Chem,2004,279(52):54062-54068.

9.Millqvist E. TRP channels and temperature in airway disease-clinical significance. Temperature(Austin),2015,2(2):172-177.

10.Grace MS,Baxter M,Dubuis E,et al. Transient receptor potential(TRP)channels in the airway:role in airway disease. Br J Pharmacol,2014,171(10):2593-2607.

11.Nilius B. TRP channels in disease. Biochim Biophys Acta,2007,1772(8):805-812.

12.Lalloo UG,Fox AJ,Belvisi MG,et al. Capsazepine inhibits cough induced by capsaicin and citric acid but not by hypertonic saline in guinea pigs. J Appl Physiol(1985),1995,79(4):1082-1087.

13.Jordt SE,Tominaga M,Julius D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc Natl Acad Sci USA,2000,97(14):8134-8139.

14.Zygmunt PM,Petersson J,Andersson DA,et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature,1999,400(6743):452-457.

15.Hwang SW,Cho H,Kwak J,et al. Direct activation of capsaicin receptors by products of lipoxygenases:endogenous capsaicin-like substances. Proc Natl Acad Sci USA,2000,97(11):6155-6160.

16.Watanabe N,Horie S,Michael GJ,et al. Immunohistochemical localization of vanilloid receptor subtype 1(TRPV1)in the guinea pig respiratory system. Pulm Pharmacol Ther,2005,18(3):187-197.

17.Watanabe N,Horie S,Michael GJ,et al. Immunohistochemical co-localization of transient receptor potential vanilloid(TRPV)1 and sensory neuropeptides in the guinea-pig respiratory system. Neuroscience,2006,141(3):1533-1543.

18.Grace M,Birrell MA,Dubuis E,et al. Transient receptor potential channels mediate the tussive response to prostaglandin E2 and bradykinin. Thorax,2012,67(10):891-900.

19.Hu Y,Liu Z,Yu X,et al. Increased acid responsiveness in vagal sensory neurons in a guinea pig model of eosinophilic esophagitis. Am J Physiol Gastrointest Liver Physiol,2014,307(2):G149-157.

20.Groneberg DA,Niimi A,Dinh QT,et al. Increased expression of transient receptor potential vanilloid-1 in airway nerves of chronic cough. Am J Respir Crit Care Med,2004,170(12):1276-1280.

21.Lv H,Yue J,Chen Z,et al. Effect of transient receptor potential vanilloid-1 on cough hypersensitivity induced by particulate matter 2.5.Life Sci,2016,151:157-166.

22.Millqvist E. TRPV1 and TRPM8 in Treatment of Chronic Cough. Pharmaceuticals(Basel),2016,9(3).

23.Jaquemar D,Schenker T,Trueb B. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J Biol Chem,1999,274(11):7325-7333.

24.Story GM,Peier AM,Reeve AJ,et al. ANKTM1,a TRP-like channel expressed in nociceptive neurons,is activated by cold temperatures. Cell,2003,112(6):819-829.

25.Bautista DM,Movahed P,Hinman A,et al. Pungent products from garlic activate the sensory ion channel TRPA1.Proc Natl Acad Sci USA,2005,102(34):12248-12252.

26.Belvisi MG,Dubuis E,Birrell MA. Transient receptor potential A1 channels:insights into cough and airway inflammatory disease. Chest,2011,140(4):1040-1047.

27.Bautista DM,Jordt SE,Nikai T,et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell,2006,124(6):1269-1282.

28.Shapiro D,Deering-Rice CE,Romero EG,et al. Activation of transient receptor potential ankyrin-1(TRPA1)in lung cells by wood smoke particulate material. Chem Res Toxicol,2013,26(5):750-758.

29.AndrèE,Gatti R,Trevisani M,et al. Transient receptor potential ankyrin receptor 1 is a novel target for protussive agents. Br J Pharmacol,2009,158(6):1621-1628.

30.Birrell MA,Belvisi MG,Grace M,et al. TRPA1 agonists evoke coughing in guinea pig and human volunteers. Am J Respir Crit Care Med,2009,180(11):1042-1047.

31.Strotmann R,Harteneck C,Nunnenmacher K,et al. OTRPC4,a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol,2000,2(10):695-702.

32.Suzuki M,Mizuno A,Kodaira K,et al. Impaired pressure sensation in mice lacking TRPV4.J Biol Chem,2003,278(25):22664-22668.

33.Liedtke W,Choe Y,Martí-Renom MA,et al. Vanilloid receptor-related osmotically activated channel(VROAC),a candidate vertebrate osmoreceptor. Cell,2000,103(3):525-535.

34.McAlexander MA,Luttmann MA,Hunsberger GE,et al. Transient receptor potential vanilloid 4 activation constricts the human bronchus via the release of cysteinyl leukotrienes. J Pharmacol Exp Ther,2014,349(1):118-125.

35.Baxter M,Eltom S,Dekkak B,et al. Role of transient receptor potential and pannexin channels in cigarette smoke-triggered ATP release in the lung. Thorax,2014,69(12):1080-1089.

36.Bonvini SJ,Birrell MA,Grace MS,et al. Transient receptor potential cation channel,subfamily V,member 4 and airway sensory afferent activation:Role of adenosine triphosphate. J Allergy Clin Immunol,2016,138(1):249-261.

37.Peier AM,Moqrich A,Hergarden AC,et al. A TRP channel that senses cold stimuli and menthol. Cell,2002,108(5):705-715.

38.Millqvist E,Ternesten-Hasséus E,Bende M. Inhalation of menthol reduces capsaicin cough sensitivity and influences inspiratory flows in chronic cough. Respir Med,2013,107(3):433-438.

39.Plevkova J,Kollarik M,Poliacek I,et al. The role of trigeminal nasal TRPM8-expressing afferent neurons in the antitussive effects of menthol. J Appl Physiol(1985),2013,115(2):268-274.

40.Birring SS,Murphy AC,Scullion JE,et al. Idiopathic chronic cough and organ-specific autoimmune diseases:a case-control study. Respir Med,2004,98(3):242-246.

41.Birring SS,Brightling CE,Symon FA,et al. Idiopathic chronic cough:association with organ specific autoimmune disease and bronchoalveolar lymphocytosis. Thorax,2003,58(12):1066-1070.

42.Mund E,Christensson B,Grönneberg R,et al. Noneosinophilic CD4 lymphocytic airway inflammation in menopausal women with chronic dry cough. Chest,2005,127(5):1714-1721.

43.Boulet LP,Milot J,Boutet M,et al. Airway inflammation in nonasthmatic subjects with chronic cough. Am J Respir Crit Care Med,1994,149(1):482-489.

44.Hope-Gill BD,Hilldrup S,Davies C,et al. A study of the cough reflex in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med,2003,168(8):995-1002.

45.Otsuka K,Niimi A,Matsumoto H,et al. Plasma substance P levels in patients with persistent cough.Respiration,2011,82(5):431-438.

46.Lee LY,Shuei LY,Gu Q,et al. Functional morphology and physiological properties of bronchopulmonary C-fiber afferents. Anat Rec A Discov Mol Cell Evol Biol,2003,270(1):17-24.

47.Xiang A,Uchida Y,Nomura A,et al. Effects of airway inflammation on cough response in the guinea pig. J Appl Physiol(1985),1998,85(5):1847-1854.

48.Cho YS,Park SY,Lee CK,et al. Elevated substance P levels in nasal lavage fluids from patients with chronic nonproductive cough and increased cough sensitivity to inhaled capsaicin. J Allergy Clin Immunol,2003,112(4):695-701.

49.Choudry NB,Fuller RW,Pride NB. Sensitivity of the human cough reflex:effect of inflammatory mediators prostaglandin E2,bradykinin,and histamine. Am Rev Respir Dis,1989,140(1):137-141.

50.Sikand P,Premkumar LS. Potentiation of glutamatergic synaptic transmission by protein kinase C-mediated sensitization of TRPV1 at the first sensory synapse. J Physiol,2007,581(2):631-647.

51.Kwong K,Lee LY. Prostaglandin E2 potentiates a TTX-resistant sodium current in rat capsaicin-sensitive vagal pulmonary sensory neurones. J Physiol,2005,564(2):437-450.

52.Lindsey BG,Morris KF,Segers LS,et al. Respiratory neuronal assemblies. Respir Physiol,2000,122(2-3):183-196.

53.Shannon R,Baekey DM,Morris KF,et al. Ventrolateral medullary respiratory network and a model of cough motor pattern generation. J Appl Physiol(1985),1998,84(6):2020-2035.

54.Mazzone SB,McLennan L,McGovern AE,et al. Representation of capsaicin-evoked urge-to-cough in the human brain using functional magnetic resonance imaging. Am J Respir Crit Care Med,2007,176(4):327-332.

55.Chen CY,Bonham AC,Plopper CG,et al. Neuroplasticity in nucleus tractus solitarius neurons after episodic ozone exposure in infant primates. J Appl Physiol(1985),2003,94(2):819-827.

56.Joad JP,Sekizawa S,Chen CY,et al. Air pollutants and cough. Pulm Pharmacol Ther,2007,20(4):347-354.

57.Ando A,Smallwood D,McMahon M,et al. Neural correlates of cough hypersensitivity in humans:evidence for central sensitisation and dysfunctional inhibitory control. Thorax,2016,71(4):323-329.

58.Joad JP,Munch PA,Bric JM,et al. Passive smoke effects on cough and airways in young guinea pigs:role of brainstem substance P. Am J Respir Crit Care Med,2004,169(4):499-504.

59.Chen CC,Akopian AN,Sivilotti L,et al. A P2X purinoceptor expressed by a subset of sensory neurons.Nature,1995,377(6548):428-431.

60.Chung KF,McGarvey L,Mazzone SB. Chronic cough as a neuropathic disorder. Lancet Respir Med,2013,1(5):414-422.

61.Abdulqawi R,Dockry R,Holt K,et al. P2X3 receptor antagonist(AF-219)in refractory chronic cough:a randomised,double-blind,placebo-controlled phase 2 study. Lancet,2015,385(9974):1198-1205.

62.Fowles HE,Rowland T,Wright C,et al. Tussive challenge with ATP and AMP:does it reveal cough hypersensitivity. Eur Respir J,2017,49(2):1601452.

63.Kamei J,Takahashi Y,Yoshikawa Y,et al. Involvement of P2X receptor subtypes in ATP-induced enhancement of the cough reflex sensitivity. Eur J Pharmacol,2005,528(1-3):158-161.

64.Karihtala P,Soini Y. Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies. APMIS,2007,115(2):81-103.

65.West AP,Brodsky IE,Rahner C,et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature,2011,472(7344):476-480.

66.Andersson DA,Gentry C,Moss S,et al. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci,2008,28(10):2485-2494.

67.Nesuashvili L,Hadley SH,Bahia PK,et al. Sensory nerve terminal mitochondrial dysfunction activates airway sensory nerves via transient receptor potential(TRP)channels. Mol Pharmacol,2013,83(5):1007-1019.