![非线性系统加权观测融合估计理论及其应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/251/27741251/b_27741251.jpg)
2.1 递推线性最小方差估计框架
考虑如下非线性系统
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_42_1.jpg?sign=1739255262-ZBSmGhWlfrl03AQKYhJrrMgx6biymEf8-0-f8fb32bafef63640ab0893b4e4879b95)
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_43_1.jpg?sign=1739255262-O6rcGkFpQL2QZcLzbQUPFbGbX46MLtJe-0-b47ecd0d2672d61b72739141bb3794d4)
式中,f(·,·)∈Rn为已知的状态函数,x(k)∈Rn为k时刻系统状态,h(·,·)∈Rm为已知的传感器观测函数,z(k)∈Rm为传感器观测数据,为系统噪声,
为传感器观测噪声。假设w(k)和v(k)是零均值、方差阵分别为Qw和R且相互独立噪声,即
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_43_4.jpg?sign=1739255262-qXSNQ252Qxja6FOsmlJ3IByPgnpMbKAn-0-56b8b8c35c0d69ee9bcefc496e2bca4a)
式中,E为均值号,T为转置号,δtk=0(t≠k),δ(·)是狄拉克函数(Dirac Delta function)。
问题是根据已知观测数据Z0~k={z(0)~z(k)},求解状态x(k)的估计。
2.1.1 射影定理
定义2.1[14]基于m×1维随机变量z∈Rm的对n×1维随机变量x∈Rn的线性估计记为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_43_6.jpg?sign=1739255262-nPWy92LA00UMhN5tPXC8Sa0T1tddTRHs-0-10189ec41d19cffc020ce21fbe0009a9)
若估计极小化性能指标为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_43_8.jpg?sign=1739255262-YZqTJr1RGEZ1iigbat2JRLOA5Icv3xsy-0-34cebd374915d3a949a716e819cf0114)
则称为随机变量x的线性最小方差估计,式中E为均值号,T为转置号。
定理2.1[14] 基于z∈Rm对随机变量x∈Rn的线性最小方差估计公式为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_43_10.jpg?sign=1739255262-ZUpwkX5DxVHajPvcCzsoj4wZh26XIERc-0-cb51c48dbb7b14c0cc771bd9adb28540)
其中假设Ex、Ez、Pxz、Pzz均存在。
证明:将式(2-4)代入式(2-5)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_44_1.jpg?sign=1739255262-XNqiT97akJz7tV51sScfWIFMbYEANZTa-0-64e9457df475888447ecbc74d30ab58d)
令有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_44_3.jpg?sign=1739255262-muz5IKQmpalYcz0p8IFoiYFhrrGEPD6B-0-0199cb347d2b06ca13750a52d0eef0cd)
所以有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_44_4.jpg?sign=1739255262-UTofP9cso3yTYfQUD3WCRCqOzdXmPmUf-0-b55b3ae0db722e6873a8eb8587e32ddf)
将式(2-9)代入式(2-7)并定义
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_44_5.jpg?sign=1739255262-iAcfToyZ31jGSpVHhrgHoI7CbOV9CWZp-0-649dca1e4a929b621dddd9964a10138a)
可有关系
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_44_6.jpg?sign=1739255262-6NBQFMa3xoSS6UkOWJY491Ddkc8uMvbR-0-aae46242f0b8a66ed002dd905311a733)
令,应用矩阵迹求导公式[152],并整理有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_44_8.jpg?sign=1739255262-lF6SvQelxDcTTwKSNEcOS4FkJ9cnGRjL-0-61980395951efd5369397cc61023e045)
证毕。
推论2.1[14]
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_45_1.jpg?sign=1739255262-wbwrqKyxK56t6RW3LQATIv0sPRKBhrGz-0-ed6e86ae20de3be52db55c5cf8d65525)
证明:由式(2-6)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_45_2.jpg?sign=1739255262-UdSwETYAQWQpFZLpigaJ21h1h1jxFcaZ-0-e63d7d6eb4313685434e67dd26924b1a)
证毕。
推论2.2[14]
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_45_3.jpg?sign=1739255262-bcfFuOy2jawX7aT3rUe6obVgiq3Iy1Ei-0-e6dc3ff85c38520ab60051865cf72d38)
证明:将式(2-6)代入式(2-16)左边,有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_45_4.jpg?sign=1739255262-qQffzLD9YVW57G4PKRDswci8EoJ2CiVG-0-747ec7f0cf279a594474619a0ebf857d)
证毕。
推论2.3[14] 与z不相关。
证明:
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_45_6.jpg?sign=1739255262-FIOqREmmL0DpZnFIu0hT0Cxr8fmLMaZ7-0-c606f81d60b091cf0ae6f106e6843587)
证毕。
定义2.2[14] 与z不相关称为
与z正交(垂直),记为
,并称
为x在z上的射影,记为
。
定义2.3[14] 由随机变量z∈Rm张成的线性流形(线性空间)定义为如下形式的随机变量z∈Rn的集合
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_1.jpg?sign=1739255262-KziN3TX0XHsZX3zyJDVpKk8l2IF6jJry-0-5094412cab5e9ca2c7cae75083493f05)
推论2.4[14]
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_2.jpg?sign=1739255262-hREIzhpeOsRyribgNCrUbNgycF9fEvak-0-6da5ff2a5fbd5616d31003deb2b49e15)
证明:
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_3.jpg?sign=1739255262-kVhMXb3Q3iux0Ppqi42LbA44nUkY40rx-0-b7c9a0759aa66233f741b0a57d03c7b8)
证毕。
定义2.4[14] 设随机变量x∈Rn,随机变量z(1),…,z(k)∈Rm,引入合成随机变量ϖ为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_4.jpg?sign=1739255262-6bEDcEqnfUleE4xzO3QVpX7OXWmSzyPh-0-3322f005e6373375bf9edabc8ec4900e)
由z(1),…,z(k)∈Rm张成的线性流形L(z(1),…,z(k))定义为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_5.jpg?sign=1739255262-JXEsMYAzFBQFm5aNmlkXPpjWBffIiu4m-0-1b14317778980577d85b0b98d5f4f0f7)
引入分块矩阵
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_6.jpg?sign=1739255262-VWFpkgdQRg1ZADqqy5X8voFyWCtYjW01-0-a8c3503070526a553cde71e83b945fb0)
则有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_7.jpg?sign=1739255262-ogK8jCueYJ8v9wv6nUIbIFxUIge4QbpX-0-df2af89bed1d3ff7d96d070746b44f2d)
定义2.5[14] 基于随机变量z(1),…,z(k)∈Rm对随机变量x∈Rn的线性最小方差估计定义为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_8.jpg?sign=1739255262-A8whdjzlv6D2mWoB5MAje0yzfHioWF8O-0-65d3d1585c2a294a9ffa5c0ce72fe876)
也称为x在线性流形
或者L(z(1),…,z(k))上的射影。
推论2.5[14] 设x∈Rn为零均值随机变量,z(1),…,z(k)∈Rm为零均值、互不相关(正交)的随机变量,则有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_47_3.jpg?sign=1739255262-Qp7bFXGHDqaIU8Mh0XgIlSsk7M5fVkgR-0-1f3897ae4849016e4c9f27da338ae310)
证明:
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_47_4.jpg?sign=1739255262-ZMpeGb3K18cbMnxf4BQz3bBstqQNueuz-0-d23cc232ac520960ef098ce0a9ea853c)
推论2.6[14]设随机变量x∈Rp,y∈Rq,随机变量(Ax+By)∈Rn,A∈Rn×p,B∈Rn×q,随机变量z∈Rm,则有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_47_5.jpg?sign=1739255262-K5xGbvW3FU30psS4OZcempAgukG9oMF8-0-6f7037776cf87ffba9eda4ea5a1f8278)
推论2.7[14] 设随机变量x∈Rn,随机变量z∈Rm,则有关系
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_47_6.jpg?sign=1739255262-uxbJqHps2zWHv39aFrfcbB203vVoZ8Ft-0-6b20b4fdc7c7f2d548e43078965ae3c7)
其中x的分量形式为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_48_1.jpg?sign=1739255262-0X1marUCbpK7eQcVxbST6vc3dvY6rZXw-0-72ae386c2daeee03e73cee39e45573e1)
证明:
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_48_2.jpg?sign=1739255262-t1WhsddR3jFK7uj1jiVrz2oLh540lvJ1-0-8d2a8ca68529a203edaba3a7c911a168)
即得到式(2-28)。证毕。
2.1.2 新息序列
定义2.6[14] 设z(1),…,z(k),…∈Rm是存在2阶矩的随机序列,它的新息序列定义为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_48_3.jpg?sign=1739255262-na3x0rQ0d279pi9xgCa1l0Lui9MCyfqW-0-b4d5cad3add720413eaed558108a9aa4)
其中z(k)的一步最优预报估值为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_48_4.jpg?sign=1739255262-Ya9RNDWEvi7SdBkEjGkIUTOMDsDCVPPU-0-9f3a834cbc70f527be9eb9c5032028a9)
因而新息序列定义为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_49_1.jpg?sign=1739255262-HMoyAKzbsHhDTXWPtIiKzkoFIk3n9Wa7-0-87845da71d845cb27b4bdb22056f9e5d)
其中规定,这样可以保证E{ε(1)}=0。
定理2.2[14]新息序列ε(k)是零均值白噪声。
证明:由新息序列定义式(2-33),有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_49_3.jpg?sign=1739255262-t0BRrnJPUPcRQAfplo4MLfmo17lEzUpG-0-b1c38aa6dc58815a3d6189af4f3d5a76)
由推论2.1,可得
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_49_4.jpg?sign=1739255262-qt6cp3fOsj7PxcbGjpL25K9WP2IIuvMr-0-e3da1cdac50cec695c76a6cc89ab1163)
设i≠j,可以设i>j,又由于ε(i)⊥L(z(1),…,z(i-1)),且有L(z(1),…,z(j))⊂L(z(1),…,z(i-1)),因此ε(i)⊥L(z(1),…,z(j))。
又因为ε(j)=z(j)-zˆ(j|j-1)∈L(z(1),…,z(j)),因而ε(i)⊥ε(j),即
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_49_5.jpg?sign=1739255262-QHNRAqnIGFuCACrRwssBDCPGsqZ2TEa9-0-f04e1fa68ca33a6c693c0ba7bc61813a)
故ε(i)是白噪声。证毕。
定理2.3[14]新息序列ε(k)与原序列z(k)含有相同的统计信息,即(z(1),…,z(k))与(ε(1),…,ε(k))张成相同的线性流形,即
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_49_6.jpg?sign=1739255262-DwVOwPDQfyJjvgP6pOohYl9psQmzSO0g-0-cd7fff1e909500c4f5bc0507a3dd8bc2)
证明:由式(2-6)和式(2-32),每个ε(k)是z(1),…,z(k)的线性组合,这里引出
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_49_7.jpg?sign=1739255262-GJmpLEjMdEF0kl0kVQqQOQ21CDarmNro-0-4b9b88c8c735f61171114c6267fabfd7)
从而有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_49_8.jpg?sign=1739255262-4JDKiyDMNSA3WswPg27q6qdGs4AoyR6i-0-4aee4706c96fba20e1b4ac2b40dfb6d9)
下面用数学归纳法证明z(k)∈L(ε(1),…,ε(k))。
由式(2-32),有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_50_1.jpg?sign=1739255262-T6DAdTKvBRBxIqdhwsLiLyQkaLOyuhMp-0-d2be1b59619bd7ce11164e8280447e37)
故有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_50_2.jpg?sign=1739255262-Eljtkq3B9QVNnqsVSgi5RwuaLKS2cqxh-0-0a36b2af8ba434934c2605b61c4c950a)
从而有式(2-37)成立。证毕。
推论2.8[14] 设随机变量x∈Rn,则有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_50_3.jpg?sign=1739255262-KMGviKzksVmbib7MBxkQ4AZ2Uh32mcJh-0-5c7bf8c351dfb33125a767fd6b76dec9)
定理2.4[14](递推射影公式)设随机变量x∈Rn,随机序列z(1),…,z(k),…∈Rm,且它们存在2阶矩,则有递推射影公式
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_50_4.jpg?sign=1739255262-3aBjMB6fRN3qeMBwXCxVlKZ9xso6Egva-0-df78d388aab1396cf94384bc461d8dd0)
证明:引入合成向量
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_50_5.jpg?sign=1739255262-kkzjwplZUBYWnciSbOYBSROtSHdhdPuZ-0-529b7137f055dac15044cc2231dc2782)
有E{ε(i)}=0。
由式(2-42)和式(2-6),有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_51_1.jpg?sign=1739255262-nRzQ26X5pTgyq2XK6JEmiu8wjcfzgQOe-0-6dcd54c332cb04124475cb5d3b726086)
证毕。
2.1.3 递推线性最小方差滤波框架
2.1.2节,在最小方差意义下,递推射影定理被给出。本节我们将给出一种具体的滤波估计框架。
定理2.5[116] 对系统式(2-1)和式(2-2),局部滤波器有如下递推滤波框架
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_51_3.jpg?sign=1739255262-i9cFqoBjlOngetufkKk10bUojR4GzhOM-0-c6d94e10339117e779121f7a755a7676)
其中滤波增益为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_52_1.jpg?sign=1739255262-q79pVIEvykOXaegdeNEVM3UEpx4Joh0A-0-8351fda9313c2e577e024eabf8bec519)
滤波误差方差阵为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_52_2.jpg?sign=1739255262-UUDc8yfioijdTpEh5qrfefHNkw57sSQ0-0-3d855457411b224d6f48a2fdbf5f91a2)
其中
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_52_3.jpg?sign=1739255262-RArxeAwxBl717OHQYN9h0O5tVXxhxX7k-0-605b3a13bc4d56355641ecba843146b3)
预报误差方差阵P(k+1|k)为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_52_4.jpg?sign=1739255262-q38YbswVjZP6kqSLs8JIfctPw1NNX1yt-0-b2e86d471c754e569059388bcc685f65)
证明:根据最小方差估计理论,一步预测是状态的条件数学期望,即有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_52_5.jpg?sign=1739255262-Ga2SAY432SNc86efHX4LTIQN9oK5J67l-0-350b75e6297bcb629a89b763384bdeae)
可以得到式(2-48)。
即有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_52_6.jpg?sign=1739255262-j4hPelaRAPlsvIh6zb11HwdEUmKVGeKL-0-18d9b9c0466676306c83fa543a5f558e)
然后可以得到式(2-49)。
由预报误差协方差阵Pxz(k+1|k)定义有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_53_1.jpg?sign=1739255262-i1by6gGRysAVDFfLJv4Sdr3X7VaqH1mF-0-3703be525808f383ae58922c898ceb43)
因为假设v(k)是具有零均值且独立的Gauss噪声,所以得到式(2-50)。
由观测误差协方差矩阵Pz(k+1|k)定义有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_53_2.jpg?sign=1739255262-3vPRXeImT4OL6lAUO4YpEmICCj5spsUg-0-a8f2a779eaa9077e8b1b010f891b28d6)
类似于Pxz(k+1|k),式(2-56)可以写为式(2-51)。
由预报误差方差阵P(k+1|k)定义有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_53_3.jpg?sign=1739255262-K1lKL8maxmOSzWH09feRBNXGpXUjYWV1-0-58da25a2f480533b0299bc9df257e2d5)
可得式(2-52)。
将式(2-45)代入滤波误差协方差矩阵定义式,整理得
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_53_4.jpg?sign=1739255262-bYCckwQVHdBmiCozU2JyMYi7AcrtHWSz-0-aa55c5f7be418ca15aaa54803662914d)
基于最小方差估计准则,,可以得到式(2-46)。证毕。
2.1.4 Kalman滤波器
滤波是去除噪声还原真实数据的一种数据处理技术。Kalman滤波在观测方差已知的情况下能够从一系列存在观测噪声的数据中,估计动态系统的状态。由于它便于计算机编程实现,并能够对现场采集的数据进行实时更新和处理,因此Kalman滤波是目前应用最为广泛的滤波算法,在通信、导航、制导与控制等领域得到了较好的应用。
考虑如下多传感器定常线性随机系统[14]
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_54_2.jpg?sign=1739255262-NwvI2JKcRqNInxknvru6Gvj7MWcrBwiz-0-48bf72e9f6e74558edbaa5cce57aa794)
其中x(k)∈Rn为状态,z(k)∈Rm为第j个传感器的观测,为观测白噪声,w(k)∈Rr为输入白噪声,Φ、Γ、Η为已知的适当维常阵。
假设1w(k)∈Rr为相互独立的,方差阵各为Qw和R的互不相关的白噪声,且噪声均值和方差统计为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_54_4.jpg?sign=1739255262-iWGnHybTngYOQeuJziWa93FXn36RyiRz-0-dc2ea9d5070e168c0e006bf442d2bbcf)
假设2x(0)不相关于w(k)和v(k)
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_54_5.jpg?sign=1739255262-LmxFBFMrSYTJFPtAIlMkgO5K9unwlNAb-0-0250924f0d1eecd01e10cd8d4e9504fd)
Kalman滤波问题是:基于观测Z0~k={z(0)~z(k)},求解状态x(j)的线性最小方差估计,它极小化性能指标为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_55_2.jpg?sign=1739255262-GHsRdF8N6t6S1wgUsgGwmqqJhJa1rJtH-0-f949821c7d5724d474b603b7bbde03cd)
对于j=k,j>k,j<k,分别称为Kalman滤波器、预报器和平滑器。下面应用射影定理推导Kalman滤波器。
定理2.6[14] 系统式(2-59)和式(2-60)在假设1和假设2下,经典Kalman滤波方程组如下:
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_55_4.jpg?sign=1739255262-cAZGvNjLRNfKSDHvzgHccDWXwy4KJgIz-0-548b4595e0fa85a52e69e49bad613d71)
证明:由递推射影公式(2-43)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_55_5.jpg?sign=1739255262-gieQJsiUPaAS0CKIENzobCIWRqkcMhcH-0-7d2ef774faf2a8f1769aed9234e6d4b1)
令
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_55_6.jpg?sign=1739255262-xXuzJTvL9qgQiNVSQxcdqPEfLKTnoVCx-0-46b272474181dcbe6a509d57d8a90435)
则有式(2-65)成立。称K(k+1)为Kalman滤波增益。对式(2-59)两边取射影有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_55_7.jpg?sign=1739255262-rtWe8BjSlbaw6HllVy2qdqdquZcOHEQz-0-d33d0b3bfc02b6fd0deb5578248f4abc)
由式(2-59)迭代有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_1.jpg?sign=1739255262-cO72UIZZYUA92VXEYYTdqV2qq89dxslj-0-6728734f36ce6f920ac1ccd773798aa4)
将式(2-75)代入式(2-60)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_2.jpg?sign=1739255262-Zmtz1Ghnc15Lrbg7CenQI70HoNmjISu0-0-e491dbfcde3ee4abed2aaded3afb8bcc)
引出如下关系
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_3.jpg?sign=1739255262-jkJ2MVyY7Zidyaqub0SmYHGAPkojvTNW-0-ba4d541160ab2493dd75433198e95d55)
由假设1、假设2和式(2-77)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_4.jpg?sign=1739255262-3glLVCLvuAEIvohMdH81d903HbuFxUve-0-9cd7cba9d721dd4cf965160d8f7430bf)
应用式(2-6)和E{w(k)}=q可得
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_5.jpg?sign=1739255262-loroXhG6PpFyIBrjz3lmXqVr3oT1uBls-0-37b5a48ac5eb3d83af8bb2d7098ab0d9)
于是得到式(2-67)成立。
对式(2-60)取射影有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_6.jpg?sign=1739255262-DfbuTKNHHifrW0WVBWBgQgtDguvAApg9-0-f352fdc4202d7ba78940e9c89e62898d)
由假设1、假设2和式(2-77)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_7.jpg?sign=1739255262-tAVp4SrDSbmhXVziwu7PC51gTJ7gM33F-0-972ea28fcdb50db6066ccc31932fcbf7)
应用式(2-6)和E{v(k)}=r可得
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_8.jpg?sign=1739255262-PFCKuLjXMuVbugoHsREHEjTE897ZwVBd-0-1e49929afbcbdfce11cbff2672c04ad7)
于是有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_9.jpg?sign=1739255262-McfUijzFmWsjLcgMsxh94KqGZfWAS2tK-0-301e1e4bed9d1334f26455665565e6b7)
将式(2-83)代入式(2-33),得到新息表达式(2-66)成立。
记滤波和预报估值误差及方差阵为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_1.jpg?sign=1739255262-KBqyQzUGRYSaYPLZ25KOJXi7nbYDMfZ9-0-56c7333b5ab8f699f7abf7358e840f94)
则由式(2-60)和式(2-84)有新息表达式
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_2.jpg?sign=1739255262-wIEkEIGEcxuEUDpXJBtTUWRYK6UEwkK8-0-567142a0069976648cf3ef6b34e17837)
且由式(2-59)和式(2-67)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_3.jpg?sign=1739255262-OuoAILWpMNrqcBCjbWz3GtGGe2T3dOIO-0-6eacccd084aaaaba7525f39a6428b33a)
由式(2-65)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_4.jpg?sign=1739255262-KDurd7u32tx56Tj7e8CUXbX56LyQMv70-0-00dc77ab531de36791672cb26b72a057)
将式(2-88)代入式(2-90)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_5.jpg?sign=1739255262-mSND5OElOrinK7xcBZAtsbgMIP2gLdwU-0-7f2e1e1c98f56b0f4414e448d2b23b7e)
其中In为n×n单位阵。因为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_6.jpg?sign=1739255262-JyhFCWFGzxExEGnepXK9iaAnbf2PFtoW-0-c8cdc802b124e9ea007e58099246a9c4)
故有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_7.jpg?sign=1739255262-mtWV0vGtxgoyfqRvLncPBereF2GSU4nT-0-4bcc4cabcb736eebafaf24065d7b977b)
这里引出
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_8.jpg?sign=1739255262-iiozWGsuj60Kgc0a7RFjcxjpI38sOwvb-0-5f166b14671b8b068dae20eeb3332a04)
于是由式(2-89)得到式(2-69)成立。
又因为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_1.jpg?sign=1739255262-42OssECZ7NzYNQ13MYfADLIdA4yI65pa-0-c9d1422d65667f030cc86ac885f79292)
故有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_2.jpg?sign=1739255262-8o99Nn3efMZuZDAE5qF848zSHaLrFtLN-0-16a390969cbfdec577fa77bd82d6f4b1)
这引出
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_3.jpg?sign=1739255262-Wv0zxTgRQZNTngvsqZ4IkcSftp7wPvU0-0-eaaca836e0e01da68bf757ef3644216d)
于是由式(2-88)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_4.jpg?sign=1739255262-K0m4SLJvNSGwPcgDh2BFhZV181iKLAFK-0-f65cc729035c3250642d0e2b78a3edb7)
且由式(2-91)可得
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_5.jpg?sign=1739255262-JrWyLBtYvqXhIeTFZZwqpHvAAKpWVR2J-0-a015893d6c5f0b0b020dd066a4818f3a)
由式(2-88)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_6.jpg?sign=1739255262-70f3KsRsRRQvuu2bezHrC45ZvrvqWohq-0-b6b4049b420248a73f4b56384ace6d28)
由射影正交性有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_7.jpg?sign=1739255262-zMyf1SiUU8Ao4Po3ua9PBfPRaTurhiBS-0-eda22c59c5e9fc39efc9ba46fd6a85b4)
且存在关系,于是由式(2-100)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_9.jpg?sign=1739255262-tksftk7IDrWdYzbo5JneFU6nDVxX2ZTI-0-18acc6726d783fad7664a34fd27b1952)
将式(2-102)和式(2-98)代入式(2-73),则式(2-68)成立。
将式(2-68)代入式(2-99)并化简整理得式(2-70)成立。证毕。
Kalman滤波递推算法框图如图2-1所示。
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_59_1.jpg?sign=1739255262-UFDKYPSGnvYojRcgKT3rax0PEUPWa9bN-0-5eb4ce8c7a7a8d32012617f1a8d1b2b8)
图2-1 KaIman滤波递推算法框图
2.1.5 ARMA新息模型
由式(2-59)和式(2-60)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_59_2.jpg?sign=1739255262-JuUIDzk67YA7pLxtjD0fH9WLoDSJIT89-0-27e557de212cc426aa5a8c8b6c9024dd)
其中In为n×n单位阵,q-1为单位滞后算子,q-1x(k)=x(k-1)。引入左素分解
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_60_1.jpg?sign=1739255262-nJvnv1N4g117H8611A7CZRWu5KxjZLUo-0-559b27562a24a7b153b85cf2cc32e67e)
其中多项式矩阵A(q-1)和B(q-1)有形式
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_60_2.jpg?sign=1739255262-YJ9Oxrtj7AvM27wpAPKVzbboNa3E2jWl-0-3a66bd5b6b660561bee6b5f9fb87c051)
将式(2-104)代入式(2-103)引出自回归滑动平均(Autoregressive Moving Aerage,ARMA)新息模型
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_60_3.jpg?sign=1739255262-1uQwiQ87d9jGrR8JpIy9OqrLD1VuLXsU-0-6b6e4cc76ac4a6611cec523c96dd5a55)
其中D(q-1)是稳定的,新息ε(k)∈Rm是零均值、方差阵为Qε的白噪声,D(q-1)和Qε可用G-W(Gevers-Wouters)算法[14]求得。
2.1.6 基于ARMA新息模型的稳态Kalman滤波器
定理2.7[14] 系统式(2-59)和式(2-60)在假设1和假设2下,基于现代时间序列的稳态Kalman滤波算法如下:
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_60_4.jpg?sign=1739255262-Q4PMijKaYEDFPgpTC8OLhgMrMz6WwOov-0-5c1c9b69413ed830cbbc309fd3dfda3b)
其中Mi可递推计算为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_61_1.jpg?sign=1739255262-2F6n7FGaLJrQuGD1bppYExqwsj18nPII-0-ab2f24f9c0dc408e5323ca42be121c17)
其中规定M0 =I m,Mt=0(t<0),Dt=0(t>nd)。
证明:见文献[14]。