![迁移学习算法:应用与实践](https://wfqqreader-1252317822.image.myqcloud.com/cover/428/47755428/b_47755428.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/3_01.jpg?sign=1739352600-k47vBebmDmPhuUk9Lovnf0p2eNLBjy93-0-e7efe91fba8dc837e91ccaa4197ba9de)
图4.5 表达图像完整与部分信息的示例
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/3_02.jpg?sign=1739352600-VGWI0xZIW1J0v9iiNNKtoC1TNTpbv6Tp-0-7b2098af5e853f687a185e657e8fba58)
图4.7 单源领域自适应与多源领域自适应。在单源领域适应中,源领域和目标领域的分布不能很好地匹配,而在多源领域适应中,由于多个源领域之间的分布偏移,匹配所有源领域和目标领域的分布要困难得多[71]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/3_03.jpg?sign=1739352600-kkZNiADIlUW01PuHc8Bxlqh00S17m7kC-0-439977a931865e9778a41a1e3ae97795)
图4.8 同时对齐分布和分类器的多源自适应方法[71]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/4_01.jpg?sign=1739352600-aC1UjU8Ymz71cfv3E4ZnkeqH40ilRPjp-0-eac5c2a7f25f035d1dcc9e4317fa324b)
图5.4 领域对抗神经网络可视化结果[64]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/4_02.jpg?sign=1739352600-PXGF93o4CvMeTHNNM294YrBGlzogHjFo-0-731f07aa1bc29ad7d17fd245f097ffa9)
图6.2 关于TrAdaBoost算法思想的一个直观示例
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/5_01.jpg?sign=1739352600-IoyQ5HZwgAQeuRHiYBjhTejRckXJ4u0c-0-c2aa1cdbf1cf0af01db5b9ce12ecc918)
图6.10 基于锚点的集成学习示意图[100]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/5_02.jpg?sign=1739352600-gZ2TJXnYCAEkmgL2qDDlLaw7rt71T4ye-0-9259a922c005f5d39387399312b3ee66)
图8.9 拆分架构[130]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/6_01.jpg?sign=1739352600-zAIVhhhaGktk8s15wBEoBmkeQtgC8gG4-0-07dc9f0cedc49a926a739fd4d1b5ae84)
图9.4 视图不足假设[136]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/6_02.jpg?sign=1739352600-LXW5JiDBD4Yi6Giqu8yz7LdFMG5KpUt2-0-a648a8ab0b777e1f543b686e7f4cceca)
图10.20 风格迁移示意图[202]