![系统建模与控制导论](https://wfqqreader-1252317822.image.myqcloud.com/cover/696/50417696/b_50417696.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
2.1 拉普拉斯变换的性质
接下来,我们回顾拉普拉斯变换的一些可以简化计算的性质。第一个性质是对拉普拉斯变量s的微分。
性质1
设
L{f(t)}=F(s)对于Re{s}>σ
那么
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/51_07.jpg?sign=1738872711-IMsPsPCnDDVvgPhiXdAhJ0lN5alROtdw-0-69a13dd5f33e2eb1d806afe899b631e6)
证明
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/51_08.jpg?sign=1738872711-iZrGv2mDuODzfW8zDBhEUDnqddXwfmq3-0-47e814e9601457b37581dd9e197856eb)
所以
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/51_09.jpg?sign=1738872711-oYfZk9C12qQnhGs1x6utOvNrpml2nyVp-0-a852f59ce77fe177206140bfba70edbf)
作为这个性质的一个例子,我们展示如何获得任意n的tn/n!的拉普拉斯变换。
例5
在前面的例子中已有
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_02.jpg?sign=1738872711-JVwRPzfwkCAf5wGi3TmnnhxPpXhFUn7K-0-7165ccbc2645dae2626790ca9827f9be)
因此
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_03.jpg?sign=1738872711-jtGFdZ5PlyjT2gCWAtzJtyqszQv3PoE8-0-74297e95ad724d8c2605d7daeff6c859)
我们对
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_04.jpg?sign=1738872711-V3KpBpmAqStPdnKz14XmVEwFgJEqUzCM-0-1d93913b38bfd01e6ed856897e3445fc)
两边的s进行微分,有
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_05.jpg?sign=1738872711-0QRVtzjkGqwlFJwBQXYVINwWemsz3UpL-0-b6f91eb009e97c591faa75ccf394396c)
或者
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_06.jpg?sign=1738872711-wAFyx0FEtibhSye1be84kV8TDueN19Hj-0-b505fdab15e67729b539010cf085a48b)
类似地,对于任意的n=0,1,2,…,都有
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_07.jpg?sign=1738872711-dHcNyHwhaxbCMrJKYeofxPIaYLrDxf6V-0-4c006df0dc22686de0ac4f076fd65adc)
例6
我们在之前的例子中可知
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_09.jpg?sign=1738872711-0ip9AxXULzzy0ymg44avpSHXTxCtGozM-0-faa48dd1bfabba7fc6e331140f09295a)
根据式(2.8)我们可以得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_10.jpg?sign=1738872711-y2X5V9hV1MMzUqJWJL5zEy0bnCIErHVD-0-8dc34b22748ac7d30d30e1be8de6f91e)
性质2 L{eαtf(t)}=F(s-α)
令
L{f(t)}=F(s)对于Re{s}>σ
则
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_01.jpg?sign=1738872711-qEFd0lxfEFZY9El7IsdddzTwqhU3dyCE-0-28ca55b379d714454265dffe240cdbb5)
证明
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_02.jpg?sign=1738872711-CIhTxh8iWVUcpsvVxsCWk7EHSAMuOLFR-0-32d7c77d8ea6d3eb5e263666a8f16520)
例7 f(t)=cos(ωt)
已知
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_03.jpg?sign=1738872711-9sjXlG54tlZdI0ENqgYawrXYe1vtNNJN-0-cac3d970c33e3aaec5dcb6b2f8329f17)
可得
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_04.jpg?sign=1738872711-cT9hbxt5XYgusdEEmS6F5UynvjgkrLSi-0-92d60689c55155778571dd9d53c30f03)
性质3
令
L{f(t)}=F(s)对于Re{s}>σ
则
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_06.jpg?sign=1738872711-tQSqRVOXJttDin7NQb6E4zS2VVNbl6aE-0-f4606873e80a39d48dccdf99ae7a4218)
证明 根据拉普拉斯变换的定义可得
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_07.jpg?sign=1738872711-0F8Iiw5N30dBCqGbmmx6dE9BiDB19Odx-0-92993780ec50b01f02e1dd3a471e6904)
接下来用分部积分法,令
u=e-st,dv=f′(t)dt
并且
du=-se-stdt,v=f(t)
于是
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_08.jpg?sign=1738872711-AnuKQEw9pSReXfa78m7udHIbHj0EBzaV-0-c7570d7fce196c6f83d1481492286fbd)
对于Re{s}>σ,存在f(t)的拉普拉斯变换,使对于Re{s}>σ成立[1]。因此最后一个方程变为
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_01.jpg?sign=1738872711-nJL7RPJz48XXTVCsV7O7yyetfCF4Yj5O-0-d0df463f5b1a5a7ed4e2aa86c19cb6ba)
例8 f(t)=cos(ωt)
f(t)=cos(ωt)和它的导数分别为
f(t)=cos(ωt)
f′(t)=-ωsin(ωt)
对于Re{s}>0,f(t)和f′(t)的拉普拉斯变换都存在。于是利用
L{f′(t)}=sL{f(t)}- f(0)
我们可以得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_02.jpg?sign=1738872711-2FcCsNEhmNkcZvpIjBu05eyDtkZBKGiB-0-7f30d59707713e42bc679f82d5e9388c)
或者,经过整理可以得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_03.jpg?sign=1738872711-tUVAd91YSY3LOP4JXvisnmhpgTrdGpe7-0-aa0b7f20f6a4520c91cde9cd574a54c4)
例9 解微分方程 考虑一阶微分方程
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_04.jpg?sign=1738872711-vBoYjgdVmHLr44rlh8uUulRC5tUWX96N-0-55042b0b44788ebe1af2ff83441b6b62)
其中,输入us是阶跃输入,并且
X(s)≜L{x(t)}
我们有
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_05.jpg?sign=1738872711-gU4rItMyFDCKKgXrZMI7QgU6gaKbCiQi-0-e0e00e25c195882cf5927bd300bcf3a1)
并且
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_06.jpg?sign=1738872711-SlczSl5nrkyxmiFXF72RNYJehBK2vb16-0-4226b34c8e735c51e50a5b6ef1f5987b)
对微分方程两边同时做拉普拉斯变换,可得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_07.jpg?sign=1738872711-idyy1WHuOPl1eFMKC5UfU0vufzCTQPly-0-da3854c9499a5c150ada08893dc49ed9)
继而
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_08.jpg?sign=1738872711-TK5Y7sQL5IWvHmWhgvx996wlkJo4ivXv-0-1ab76de9ceab57866b3d1e60d85fec59)
将X(s)提到公式左侧,可以得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_09.jpg?sign=1738872711-mSkVgnGZMIfslDwKHgtShwnbu5FVHpRa-0-887431e93e993527ce92abaf6434581e)
化简得
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_10.jpg?sign=1738872711-qbUEOg4jNcU5aNAz5gYBJ8GM1vyKgIw3-0-02544853d1cbf3500bf093a1432c58e5)
为了解出x(t),我们需要计算
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/55_01.jpg?sign=1738872711-5D8YACqJ7nx6t8VF7hfUVGwnygv7Kvu3-0-bb7012f58471cf77ccbc7ec480c39313)
第二个方程后面是部分分式展开,这涉及下一节的内容。