![信息流推荐算法](https://wfqqreader-1252317822.image.myqcloud.com/cover/888/51709888/b_51709888.jpg)
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/3_01.jpg?sign=1739002761-W5IuwMWWAmk9GM6w2tSOQNzYiGBToN7q-0-2297e5338a8f7ba9a8d51357c761087e)
图3-14 Item2vec和SVD的可视化效果对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/3_02.jpg?sign=1739002761-kgiQ3DQRAcpVsH1xOOUNO3vDpsRgwhT1-0-d36a499f242535dd731794844614629d)
图3-16 视频观看倾向与发布时间对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/4_01.jpg?sign=1739002761-1PGLymwaRsWPMHq3TVBlgyIg1ktoWNuJ-0-bb15c4a77fab6202ad7f442c59f62c79)
图3-30 Node2vec效果可视化
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/4_02.jpg?sign=1739002761-WDzYbVDxKNp8MV56cuM6f5fQZm8qixc6-0-904f92d2d498b340df0ad67476757d95)
图3-37 DIEN模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/5_01.jpg?sign=1739002761-I3JLkczPkyGInqwVCUBwEHZCJo5erMd6-0-e9b51ec16ee6e9cef2c0a234e799bf8f)
图4-2 不同α系数的衰减速度对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/5_02.jpg?sign=1739002761-fuKTqWzPIuxgtXHUZ7hYdAmMg6j7IgiU-0-f8b118a51985ebd4912a2d8332b360ad)
图4-20 PRAUC与Hit Rate在粗排中的区别
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/6_01.jpg?sign=1739002761-WnHxfYbaFO7U4CG8Cja9yPVUUYoplZRQ-0-ec7e0c061dadcf11fd3fab805200601e)
图5-15 不同正则化方式的训练和测试误差
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/6_02.jpg?sign=1739002761-wUnIZCT5BPAP51ocHzNHXog27WACoI8N-0-4ef8903fe676f66b2e8d0e1d77275d8f)
图5-16 DIEN算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/7_01.jpg?sign=1739002761-DEwtchzLn9RdQDzj7cxaZdopxUG9AaEc-0-b368530101f94addf93ea821fd3d830b)
图5-18 DSIN算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/8_01.jpg?sign=1739002761-FbLvhPijl425Mb1GINRQAEMcoQRKW6H8-0-95d513b036e492565a3647ea8376e73c)
图5-20 工业级展示广告系统的实时点击率预测系统
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/8_02.jpg?sign=1739002761-eniOUiDodaoWHZGaVvm9Jby0zh12KdBL-0-226e9a1f72c92cee1ecbc4c08c2b0007)
图6-3 高斯过程拟合函数的示例
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/8_03.jpg?sign=1739002761-OwG0JTCreYDxGVvwh0WwL2JXe9wZOKix-0-e5381a2f132493f0a570b89ad1f88cdb)
图6-7 (1+1)-ES和(μ+λ)-ES的对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/9_01.jpg?sign=1739002761-zJRJdLNh4mNyPb5ZhMb5n8FVffdSHHV5-0-471d76416b2708be229642bbc4c0d052)
图6-8 OpenAI ES优化的示例一
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/9_02.jpg?sign=1739002761-12N33PJAiBj6IZaiD03kH4pbt6ZoBoIW-0-114a748a61ac63fd8d6f9b3be7c84982)
图6-9 OpenAI ES优化的示例二
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/10_01.jpg?sign=1739002761-I0oFMYTXAwUdeBStvQjYjVNeydU2EHBJ-0-9e81d91f96edb9c89c949cabec7e2085)
图6-16 多个强化学习方法在4种类型上的动作分布
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/11_01.jpg?sign=1739002761-fYQ9LVBrALWmQL5JKEaav2NfYnpNbXUa-0-fcdcd7dfaced7e202982d7b2dd52e9aa)
图7-3 DLCM在不同相关文档上的优化效果
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/11_02.jpg?sign=1739002761-qniX5Y6vd2fOWJAm6RR7rXtYwQlCbgZh-0-4a5e81ac31147de87f7cc2574ecf4b25)
图7-8 Seq2Slate的计算流程
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/12_01.jpg?sign=1739002761-cfnvTrHIWELxQM62buB9Ml9qJqJljpWK-0-8da745ab053ea7cfe48ed912877e8232)
图7-10 GRN中的Evaluator模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/12_02.jpg?sign=1739002761-4n5aB1UrjjsfH59ARqOMdzdGc1TGY0dd-0-8aff0b1b8df614d9fe7a7f40a05dc707)
图7-11 GRN中的Generator模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/13_01.jpg?sign=1739002761-NdYQMTyR9J7P6Oh9oxoHeFJ9x7GFwYo6-0-2e8e250f234ebae2e706c51386de6b42)
图7-14 电商场景中的案例对比:list-wise模型与Permutation-wise模型
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/13_02.jpg?sign=1739002761-WGDqh665fGnJJUXpUaDpcdOoE9zfZC5i-0-d5af8efa51ae400aa3bf8e10a344fc03)
图7-16 PRS框架的整体结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/14_01.jpg?sign=1739002761-Oq5gHm4ZAg35V1e76mTcfvkQhbaqnyUM-0-4eb24e7f381e3313b67d704a8eb69c99)
图7-17 基于Beam Search的序列生成方法
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/14_02.jpg?sign=1739002761-uye0fumxVVZhwAAzn5y36vdD4UD60UoZ-0-045b54ce723ac436662e3ac99a53731a)
图7-18 DPWN的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/15_01.jpg?sign=1739002761-rka3CjWQAiY2lOMWkSoGo6535FBHCvyq-0-9369d56866e73d3be4d2a0ffeaceb3dc)
图7-19 流行的端云协同瀑布流推荐系统框架
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/15_02.jpg?sign=1739002761-Z7h2SRmJsUK3ATajFLjhyPHNOezThNWn-0-86fa9dd4547722b15e47e9d565e18ef5)
图7-22 EdgeRec中的异构用户行为序列建模和上下文感知重排的行为注意力网络
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/16_01.jpg?sign=1739002761-j372Olt82PZUPTG98aezIt5JrlFMF266-0-e717e7e4bd3b87ff023302a977a7082f)
图7-24 减少模型参数空间的MetaPatch方法
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/16_02.jpg?sign=1739002761-2x3JHVhQPJoOfjC40CdX4bpjjBIi6LbH-0-7ddbe63f0ee39f2117065903032b95b0)
图7-25 增强云端模型的MoMoDistill方法
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/16_03.jpg?sign=1739002761-5fhvRaOIaJdqz1wsoa7oe6u2UTbAtaFS-0-a40d683837a9928023256ac800150cb7)
图7-26 DCCL-e和DIN在所有细分用户群上的推荐效果对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/17_01.jpg?sign=1739002761-fovHVbNcUJuzCAMICd0SmFqIdtGpGgp2-0-4fbc5bdc9bcb52c9a43b3db9eda10bcf)
图8-3 负采样校准前后的概率密度对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/17_02.jpg?sign=1739002761-J3DeJvHVtypYsSFPvoXd2ltcWyP14Dq8-0-bdeacb6e7a680b2e143f904cc8380366)
图9-2 DropoutNet的相关实验结果
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/18_01.jpg?sign=1739002761-82UIOSEj02umql3EaK2hXFW2vgWZ5tiQ-0-77622365899345c0193d179a2ca11344)
图9-5 MWUF算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/18_02.jpg?sign=1739002761-YJ3CI3RPsM2MMZCPjmnIXFX3pAc2euKJ-0-2dd6d6b33b5cc8ce85ad243a4802a4ff)
图9-7 Cold & Warm算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/19_01.jpg?sign=1739002761-uSY7Ft1MdsW97Tln82T5BMipras473j7-0-5404ea98d53bf531a6a7dd4acda8d9fa)
图9-9 冷启动和非冷启动任务的效果变化趋势
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/19_02.jpg?sign=1739002761-m0dHfhCyGDJxlSpRkKOJ4ZXQdIZBOuzO-0-91ba00d7464cfd4ed7bb9e8a8d8b908a)
图9-11 数据偏置的说明和它对于模型训练的负向影响
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/19_03.jpg?sign=1739002761-Drby2dX7JOl8KkYcni1rs4oMiTaKZNs4-0-10780facde3a25f54a579873fba21a3b)
图9-17 CIKM Cup 2016数据集的相关分析
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/20_01.jpg?sign=1739002761-7H6kwRtOva4KTxpmCkMs7m5MROgTTK5Q-0-82ef0c894ae2b3114b1ae12de09bbbc9)
图9-19 属性间的相关性在源领域和目标领域是一致的
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/20_02.jpg?sign=1739002761-XpV84bWOoLq3GJs3FBQX9n1PROETT1Jr-0-90eb1bdb4e361afe27bdc1dbaefe6a47)
图9-20 ESAM算法中多个损失的设计意图
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/21_01.jpg?sign=1739002761-66SIz9NrdedZPurqypPUKdzxOR7994wv-0-573e9453d124720b00025abe95c2734f)
图9-21 T-SNE对数据特征分布的可视化,红色和蓝色分别表示源领域和目标领域
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/21_02.jpg?sign=1739002761-6p7YRUot71r3gL5VAfhfAjXMHiS7IuF4-0-175d46d845768084a1a218cd0929caa9)
图9-22 真实数据上的相关性得分分布对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/22_01.jpg?sign=1739002761-pgLDR1FIhpFp4EGHdNsNYNcAvfJi7VPe-0-9c36cf7e7207a68ca35927c35ed2e84a)
图9-23 解决协同过滤中长尾问题的对抗网络模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/22_02.jpg?sign=1739002761-z6DIyzj1Cy69F6VvnLcKWkqhxwXIiyX8-0-373b5e15eef53ae1e3563568077c78be)
图10-6 层与桶的流量关系